Anomaly Detection Based on GCNs and DBSCAN in a Large-Scale Graph

被引:3
作者
Emane, Christopher Retiti Diop [1 ]
Song, Sangho [1 ]
Lee, Hyeonbyeong [1 ]
Choi, Dojin [2 ]
Lim, Jongtae [1 ]
Bok, Kyoungsoo [3 ]
Yoo, Jaesoo [1 ]
机构
[1] Chungbuk Natl Univ, Dept Informat & Commun Engn, Chungdae ro 1, Cheongju 28644, South Korea
[2] Changwon Natl Univ, Dept Comp Engn, Changwondaehak ro 20, Chang Won 51140, South Korea
[3] Wonkwang Univ, Dept Artificial Intelligence Convergence, Iksandae 460, Iksan 54538, South Korea
基金
新加坡国家研究基金会;
关键词
anomaly detection; GCNs; DBSCAN; deep learning; clustering algorithms; large-scale graph;
D O I
10.3390/electronics13132625
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly detection is critical across domains, from cybersecurity to fraud prevention. Graphs, adept at modeling intricate relationships, offer a flexible framework for capturing complex data structures. This paper proposes a novel anomaly detection approach, combining Graph Convolutional Networks (GCNs) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN). GCNs, a specialized deep learning model for graph data, extracts meaningful node and edge representations by incorporating graph topology and attribute information. This facilitates learning expressive node embeddings capturing local and global structural patterns. For anomaly detection, DBSCAN, a density-based clustering algorithm effective in identifying clusters of varying densities amidst noise, is employed. By defining a minimum distance threshold and a minimum number of points within that distance, DBSCAN proficiently distinguishes normal graph elements from anomalies. Our approach involves training a GCN model on a labeled graph dataset, generating appropriately labeled node embeddings. These embeddings serve as input to DBSCAN, identifying clusters and isolating anomalies as noise points. The evaluation on benchmark datasets highlights the superior performance of our approach in anomaly detection compared to traditional methods. The fusion of GCNs and DBSCAN demonstrates a significant potential for accurate and efficient anomaly detection in graphs. This research contributes to advancing graph-based anomaly detection, with promising applications in domains where safeguarding data integrity and security is paramount.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Graph Anomaly Detection with Graph Convolutional Networks
    Mir, Aabid A.
    Zuhairi, Megat F.
    Musa, Shahrulniza
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (11) : 601 - 613
  • [42] A system architecture for real-time anomaly detection in large-scale NFV systems
    Gulenko, Anton
    Wallschlaeger, Marcel
    Schmidt, Florian
    Kao, Odej
    Liu, Feng
    11TH INTERNATIONAL CONFERENCE ON FUTURE NETWORKS AND COMMUNICATIONS (FNC 2016) / THE 13TH INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS AND PERVASIVE COMPUTING (MOBISPC 2016) / AFFILIATED WORKSHOPS, 2016, 94 : 491 - 496
  • [43] Predictive modeling and anomaly detection in large-scale web portals through the CAWAL framework
    Canay, Ozkan
    Kocabicak, Umit
    KNOWLEDGE-BASED SYSTEMS, 2024, 306
  • [44] Large-Scale Learnable Graph Convolutional Networks
    Gao, Hongyang
    Wang, Zhengyang
    Ji, Shuiwang
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1416 - 1424
  • [45] Anomaly based Incident Detection in Large Scale Smart Transportation Systems
    Islam, Md Jaminur
    Talusan, Jose Paolo
    Bhattacharjee, Shameek
    Tiausas, Francis
    Vazirizade, Sayyed Mohsen
    Dubey, Abhishek
    Yasumoto, Keiichi
    Das, Sajal K.
    2022 13TH ACM/IEEE INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS (ICCPS 2022), 2022, : 215 - 224
  • [46] Efficient KPI Anomaly Detection Through Transfer Learning for Large-Scale Web Services
    Zhang, Shenglin
    Zhong, Zhenyu
    Li, Dongwen
    Fan, Qiliang
    Sun, Yongqian
    Zhu, Man
    Zhang, Yuzhi
    Pei, Dan
    Sun, Jiyan
    Liu, Yinlong
    Yang, Hui
    Zou, Yongqiang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (08) : 2440 - 2455
  • [47] Anomaly Subgraph Mining in Large-Scale Social Networks
    Chen, Shengnan
    Qian, Jianmin
    Chen, Haopeng
    Liu, Si
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 883 - 890
  • [48] Anomaly detection of traffic session based on graph neural network
    Du Peng
    Peng Cheng-Wei
    Xiang Peng
    Li Qing-Shan
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON CYBER SECURITY, CSW 2022, 2022, : 1 - 9
  • [49] FIAD: Graph anomaly detection framework based feature injection
    Chen, Aoge
    Wu, Jianshe
    Zhang, Hongtao
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 259
  • [50] Survey of Deep Learning Based Graph Anomaly Detection Methods
    Chen B.
    Li J.
    Lu X.
    Sha C.
    Wang X.
    Zhang J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (07): : 1436 - 1455