Dynamics of a delayed nonlocal reaction-diffusion heroin epidemic model in a heterogenous environment

被引:5
|
作者
Djilali, Salih [1 ]
Chen, Yuming [2 ]
Bentout, Soufiane [3 ]
机构
[1] Hassiba Benbouali Univ, Fac Exact Sci & Comp, Dept Math, Chlef 02000, Algeria
[2] Wilfrid Laurier Univ, Dept Math, Waterloo, ON, Canada
[3] Univ Ain Temouchent, Dept Math & Informat, Belhadj Bouchaib, Algeria
关键词
asymptotic profile; basic reproduction number; heroin epidemic model; nonlocal diffusion; stability; PRINCIPAL EIGENVALUE; GLOBAL STABILITY; DISPERSAL; AGE; EVOLUTION; BEHAVIOR; USERS;
D O I
10.1002/mma.10327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To study the consumption of heroin in a heterogeneous environment, we pro-pose and analyze a spatiotemporal model with a distributed delay. Using thespectral theory, we determine the basic reproduction numberR0, which serves athreshold role. If R-0<1, then the addiction-free steady state is globally asymp-totically stable while if R-0>1, then there is at least one addictive steady state.Moreover, when R-0>1, if one of the dispersal coefficients is zero, then there isonly one addictive steady state, and it is globally asymptotically stable; if bothdiffusions of susceptible and addicted individuals are present, we cannot identifythe temporal behavior of solutions, and hence, we study the asymptotic profileof addictive steady states when one of the dispersal coefficients tend to zero
引用
收藏
页码:273 / 307
页数:35
相关论文
共 50 条
  • [1] THRESHOLD DYNAMICS OF A DELAYED NONLOCAL REACTION-DIFFUSION CHOLERA MODEL
    Liu, Weiwei
    Wang, Jinliang
    Chen, Yuming
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (09): : 4867 - 4885
  • [2] Stability Analysis of a Reaction-Diffusion Heroin Epidemic Model
    Zhang, Liang
    Xing, Yifan
    COMPLEXITY, 2020, 2020
  • [3] Dynamics in a reaction-diffusion epidemic model via environmental driven infection in heterogenous space
    Wang, Ning
    Zhang, Long
    Teng, Zhidong
    JOURNAL OF BIOLOGICAL DYNAMICS, 2022, 16 (01) : 373 - 396
  • [4] Traveling waves for a nonlocal delayed reaction-diffusion SIR epidemic model with demography effects
    Zhang, Wenhui
    Wu, Weixin
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2024, 39 (04): : 630 - 652
  • [5] Complex dynamics of a reaction-diffusion epidemic model
    Wang, Weiming
    Cai, Yongli
    Wu, Mingjiang
    Wang, Kaifa
    Li, Zhenqing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2240 - 2258
  • [6] Existence and stability of bistable wavefronts in a nonlocal delayed reaction-diffusion epidemic system
    Li, Kun
    Li, Xiong
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (01) : 146 - 176
  • [7] Stability and bifurcations in a nonlocal delayed reaction-diffusion population model
    Chen, Shanshan
    Yu, Jianshe
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) : 218 - 240
  • [8] Dynamics of a strongly nonlocal reaction-diffusion population model
    Billingham, J
    NONLINEARITY, 2004, 17 (01) : 313 - 346
  • [9] The dynamics of boundary spikes for a nonlocal reaction-diffusion model
    Iron, D
    Ward, MJ
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 : 491 - 514
  • [10] SPATIAL DYNAMICS OF A NONLOCAL REACTION-DIFFUSION EPIDEMIC MODEL IN TIME-SPACE PERIODIC HABITAT
    Xin, Ming-Zhen
    Wang, Bin-Guo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (08) : 2430 - 2465