The development of new efficient iterative methods for the solution of absolute value equations

被引:1
作者
Ali, Rashid [1 ]
Awwad, Fuad A. [2 ]
Ismail, Emad A. A. [2 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Zhejiang, Peoples R China
[2] King Saud Univ, Coll Business Adm, Dept Quantitat Anal, POB 71115, Riyadh 11587, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 08期
关键词
iterative methods; convergence; absolute value equations; numerical results; GENERALIZED NEWTON METHOD; VERTICAL-BAR;
D O I
10.3934/math.20241098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The use of absolute value equations (AVEs) is widespread across a wide range of fields, including scientific computing, management science, and engineering. Our aim in this study is to introduce two new methods for solving AVEs and to explore their convergence characteristics. Furthermore, numerical experiments will be carried out to demonstrate their feasibility, robustness, and efficacy.
引用
收藏
页码:22565 / 22577
页数:13
相关论文
共 36 条
[1]   The study of new fixed-point iteration schemes for solving absolute value equations [J].
Ali, Rashid ;
Zhang, Zhao ;
Awwad, Fuad A. .
HELIYON, 2024, 10 (14)
[2]   A new matrix splitting generalized iteration method for linear complementarity problems [J].
Ali, Rashid ;
Akgul, Ali .
APPLIED MATHEMATICS AND COMPUTATION, 2024, 464
[3]   The matrix splitting fixed point iterative algorithms for solving absolute value equations [J].
Ali, Rashid ;
Ali, Asad .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (06)
[4]   The solution of a type of absolute value equations using two new matrix splitting iterative techniques [J].
Ali, Rashid ;
Pan, Kejia .
PORTUGALIAE MATHEMATICA, 2022, 79 (3-4) :241-252
[5]   A globally and quadratically convergent method for absolute value equations [J].
Caccetta, Louis ;
Qu, Biao ;
Zhou, Guanglu .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 48 (01) :45-58
[6]   A relaxed generalized Newton iteration method for generalized absolute value equations [J].
Cao, Yang ;
Shi, Quan ;
Zhu, Sen-Lai .
AIMS MATHEMATICS, 2021, 6 (02) :1258-1275
[7]   A new SOR-like method for solving absolute value equations [J].
Dong, Xu ;
Shao, Xin-Hui ;
Shen, Hai-Long .
APPLIED NUMERICAL MATHEMATICS, 2020, 156 :410-421
[8]   A generalization of the Gauss-Seidel iteration method for solving absolute value equations [J].
Edalatpour, Vahid ;
Hezari, Davod ;
Salkuyeh, Davod Khojasteh .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 :156-167
[9]   An Efficient Algorithm for Solving Absolute Value Equations [J].
Fakharzadeh, A. J. ;
Shams, N. N. .
JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (03)
[10]   A note on absolute value equations [J].
Hu, Sheng-Long ;
Huang, Zheng-Hai .
OPTIMIZATION LETTERS, 2010, 4 (03) :417-424