Disrupted basolateral amygdala circuits supports negative valence bias in depressive states

被引:4
作者
Bigot, Mathilde [1 ,2 ]
De Badts, Claire-Helene [1 ]
Benchetrit, Axel [1 ]
Vicq, Eleonore [1 ]
Moigneu, Carine [1 ]
Meyrel, Manon [3 ,4 ,5 ]
Wagner, Sebastien [1 ]
Hennrich, Alexandru Adrian [6 ,7 ]
Houenou, Josselin [3 ,4 ,5 ]
Lledo, Pierre-Marie [1 ]
Henry, Chantal [1 ,8 ,9 ]
Alonso, Mariana [1 ]
机构
[1] Univ Paris Cite, Inst Pasteur, Ctr Natl Rech Sci, Percept & Act Unit,Unite Mixte Rech 3571, F-75015 Paris, France
[2] Sorbonne Univ, Coll Doctoral, Paris, France
[3] Mondor Univ Hosp, Assistance Publ Hop Paris, Dept Psychiat, Creteil, France
[4] CEA Saclay, UNIACT Lab, PsyBrain Team, NeuroSpin, Gif Sur Yvette, France
[5] Univ Paris Est Creteil, Fac Sante Creteil, Translat Neuropsychiat Team, INSERM,U955,IMRB, Creteil, France
[6] Ludwig Maximilians Univ Munchen, Max von Pettenkofer Inst Virol, Med Fac, Munich, Germany
[7] Ludwig Maximilians Univ Munchen, Gene Ctr, Munich, Germany
[8] Univ Paris Cite, Paris, France
[9] GHU Paris Psychiat & Neurosci, Dept Psychiat, Serv Hosp Univ, Paris, France
关键词
ANIMAL-MODEL; NEURONS; STRESS; MEMORY; ANTIDEPRESSANT; NEUROGENESIS; METAANALYSIS; ASSOCIATION; INFORMATION; DISORDERS;
D O I
10.1038/s41398-024-03085-6
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Negative bias is an essential characteristic of depressive episodes leading patients to attribute more negative valence to environmental cues. This negative bias affects all levels of information processing including emotional response, attention and memory, leading to the development and maintenance of depressive symptoms. In this context, pleasant stimuli become less attractive and unpleasant ones more aversive, yet the related neural circuits underlying this bias remain largely unknown. By studying a mice model for depression chronically receiving corticosterone (CORT), we showed a negative bias in valence attribution to olfactory stimuli that responds to antidepressant drug. This result paralleled the alterations in odor value assignment we observed in bipolar depressed patients. Given the crucial role of amygdala in valence coding and its strong link with depression, we hypothesized that basolateral amygdala (BLA) circuits alterations might support negative shift associated with depressive states. Contrary to humans, where limits in spatial resolution of imaging tools impair easy amygdala segmentation, recently unravelled specific BLA circuits implicated in negative and positive valence attribution could be studied in mice. Combining CTB and rabies-based tracing with ex vivo measurements of neuronal activity, we demonstrated that negative valence bias is supported by disrupted activity of specific BLA circuits during depressive states. Chronic CORT administration induced decreased recruitment of BLA-to-NAc neurons preferentially involved in positive valence encoding, while increasing recruitment of BLA-to-CeA neurons preferentially involved in negative valence encoding. Importantly, this dysfunction was dampened by chemogenetic hyperactivation of BLA-to-NAc neurons. Moreover, altered BLA activity correlated with durable presynaptic connectivity changes coming from the paraventricular nucleus of the thalamus, recently demonstrated as orchestrating valence assignment in the amygdala. Together, our findings suggest that specific BLA circuits alterations might support negative bias in depressive states and provide new avenues for translational research to understand the mechanisms underlying depression and treatment efficacy.
引用
收藏
页数:12
相关论文
共 74 条
[1]  
American Psychiatric Association, 2022, Diagnostic and statistical manual of mental disorders: DSM-5TM, DOI 10.1176/appi.books.9780890425596
[2]  
[Anonymous], The Amygdaloid Complex: Anatomy and Physiology, DOI [10.1152/physrev.00002.2003, DOI 10.1152/PHYSREV.00002.2003]
[3]   Influence of chronic stress on network states governing valence processing: Potential relevance to the risk for psychiatric illnesses [J].
Antonoudiou, Pantelis ;
Stone, Bradly ;
Colmers, Phillip L. W. ;
Evans-Strong, Aidan ;
Walton, Najah ;
Maguire, Jamie .
JOURNAL OF NEUROENDOCRINOLOGY, 2023, 35 (09)
[4]   Olfactory anhedonia and negative olfactory alliesthesia in depressed patients [J].
Atanasova, Boriana ;
El-Hage, Wissam ;
Chabanet, Claire ;
Gaillard, Philippe ;
Belzung, Catherine ;
Camus, Vincent .
PSYCHIATRY RESEARCH, 2010, 176 (2-3) :190-196
[5]   A Unified Model of Depression: Integrating Clinical, Cognitive, Biological, and Evolutionary Perspectives [J].
Beck, Aaron T. ;
Bredemeier, Keith .
CLINICAL PSYCHOLOGICAL SCIENCE, 2016, 4 (04) :596-619
[6]   Brain anatomy of major depression II. Focus on amygdala [J].
Bellani, M. ;
Baiano, M. ;
Brambilla, P. .
EPIDEMIOLOGY AND PSYCHIATRIC SCIENCES, 2011, 20 (01) :33-36
[7]   Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala [J].
Beyeler, Anna ;
Chang, Chia-Jung ;
Silvestre, Margaux ;
Leveque, Clementine ;
Namburi, Praneeth ;
Wildes, Craig P. ;
Tye, Kay M. .
CELL REPORTS, 2018, 22 (04) :905-918
[8]   Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval [J].
Beyeler, Anna ;
Namburi, Praneeth ;
Glober, Gordon F. ;
Simonnet, Clemence ;
Calhoon, Gwendolyn G. ;
Conyers, Garrett F. ;
Luck, Robert ;
Wildes, Craig P. ;
Tye, Kay M. .
NEURON, 2016, 90 (02) :348-361
[9]   Assessing positive and negative valence systems to refine animal models of bipolar disorders: the example of GBR 12909-induced manic phenotype [J].
Bigot, Mathilde ;
Vicq, Eleonore ;
Lledo, Pierre-Marie ;
Alonso, Mariana ;
Henry, Chantal .
SCIENTIFIC REPORTS, 2022, 12 (01)
[10]   An emotional-response model of bipolar disorders integrating recent findings on amygdala circuits [J].
Bigot, Mathilde ;
Alonso, Mariana ;
Houenou, Josselin ;
Sarrazin, Samuel ;
Dargel, Aroldo A. ;
Lledo, Pierre-Marie ;
Henry, Chantal .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2020, 118 :358-366