Synergic Surface Modifications of PbS Quantum Dots by Sodium Acetate in Solid-State Ligand Exchange toward Short-Wave Infrared Photodetectors

被引:6
作者
Wang, Xiao [1 ,2 ,3 ]
Song, Zhulu [4 ,5 ]
Tang, Haodong [6 ]
Li, Yiwen [3 ]
Zhong, Huaying [7 ]
Wu, Jiufeng [1 ,2 ]
Wang, Weichao [1 ,2 ]
Chen, Simin [1 ,2 ]
Zhang, Wenjie [1 ,2 ]
Fang, Fan [1 ,2 ]
Hao, Junjie [6 ]
Wu, Dan [8 ]
Mueller-Buschbaum, Peter [7 ]
Cao, Leifeng [1 ,2 ]
Tang, Zeguo [8 ]
Tang, Jun [8 ]
Zhang, Lei [3 ]
Wang, Kai [4 ,5 ]
Chen, Wei [1 ,2 ,4 ,5 ]
机构
[1] Shenzhen Technol Univ, Ctr Intense Laser Applicat Technol, Shenzhen Key Lab Ultraintense Laser & Adv Mat Tech, Shenzhen 518118, Peoples R China
[2] Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Peoples R China
[3] Hubei Univ, Sch Mat Sci & Engn, Wuhan 430062, Peoples R China
[4] Southern Univ Sci & Technol, Inst Nanosci & Applicat, Shenzhen 518055, Peoples R China
[5] Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
[6] Shenzhen Technol Univ, Coll Integrated Circuits & Optoelect Chips, Shenzhen 518118, Peoples R China
[7] Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany
[8] Shenzhen Technol Univ, Coll New Mat & New Energies, Shenzhen 518118, Peoples R China
基金
中国国家自然科学基金;
关键词
PbS quantum dots; solid-state ligand exchange; short-wave infrared; photodetector; GISAXS; SOLAR-CELLS; EFFICIENCY; MOBILITY; INKS;
D O I
10.1021/acsami.4c05201
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
PbS quantum dots (QDs) are promising for short-wave infrared (SWIR) photodetection and imaging. Solid-state ligand exchange (SSLE) is a low-fabrication-threshold QD solid fabrication method. However, QD treatment by SSLE remains challenging in seeking refined surface passivation to achieve the desired device performance. This work investigates using NaAc in the ligand exchange process to enhance the film morphology and electronic coupling configuration of QD solids. By implementing various film and photodetector device characterization studies, we confirm that adding NaAc with a prominent adding ratio of 20 wt % NaAc with tetrabutylammonium iodide (TBAI) in the SSLE leads to an improved film morphology, reduced surface roughness, and decreased trap states in the QD solid films. Moreover, compared to the devices without NaAc treatment, those fabricated with NaAc-treated QD solids exhibit an enhanced performance, including lower dark current density (<100 nA/cm(2)), faster response speed, higher responsivity, detectivity, and external quantum efficiency (EQE reaching 25%). The discoveries can be insightful in developing efficient, low-cost, and low-fabrication-threshold QD SWIR detection and imager applications.
引用
收藏
页码:44164 / 44173
页数:10
相关论文
共 58 条
[21]   Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution [J].
Hines, MA ;
Scholes, GD .
ADVANCED MATERIALS, 2003, 15 (21) :1844-1849
[22]   Highly Monodispersed PbS Quantum Dots for Outstanding Cascaded-Junction Solar Cells [J].
Hou, Bo ;
Cho, Yuljae ;
Kim, Byung Sung ;
Hong, John ;
Park, Jong Bae ;
Ahn, Se Jin ;
Sohn, Jung Inn ;
Cha, SeungNam ;
Kim, Jong Min .
ACS ENERGY LETTERS, 2016, 1 (04) :834-839
[23]   Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids [J].
Jo, Jea Woong ;
Choi, Jongmin ;
de Arquer, F. Pelayo Garcia ;
Seifitokaldani, Ali ;
Sun, Bin ;
Kim, Younghoon ;
Ahn, Hyungju ;
Fan, James ;
Quintero-Bermudez, Rafael ;
Kim, Junghwan ;
Choi, Min-Jae ;
Baek, Se-Woong ;
Proppe, Andrew H. ;
Walters, Grant ;
Nam, Dae-Hyun ;
Kelley, Shana ;
Hoogland, Sjoerd ;
Voznyy, Oleksandr ;
Sargent, Edward H. .
NANO LETTERS, 2018, 18 (07) :4417-4423
[24]   Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure [J].
Karani, Arfa ;
Yang, Le ;
Bai, Sai ;
Futscher, Moritz H. ;
Snaith, Henry J. ;
Ehrler, Bruno ;
Greenham, Neil C. ;
Di, Dawei .
ACS ENERGY LETTERS, 2018, 3 (04) :869-874
[25]   Breaking the absorption limit of Si toward SWIR wavelength range via strain engineering [J].
Katiyar, Ajit K. ;
Thai, Kean You ;
Yun, Won Seok ;
Lee, JaeDong ;
Ahn, Jong-Hyun .
SCIENCE ADVANCES, 2020, 6 (31)
[26]   Energy Transfer in Quantum Dot Solids [J].
Kholmicheva, Natalia ;
Moroz, Pavel ;
Eckard, Holly ;
Jensen, Gregory ;
Zamkov, Mikhail .
ACS ENERGY LETTERS, 2017, 2 (01) :154-160
[27]   A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics [J].
Kim, Younghoon ;
Che, Fanglin ;
Jo, Jea Woong ;
Choi, Jongmin ;
de Arquer, F. Pelayo Garcia ;
Voznyy, Oleksandr ;
Sun, Bin ;
Kim, Junghwan ;
Choi, Min-Jae ;
Quintero-Bermudez, Rafael ;
Fan, Fengjia ;
Tan, Chih Shan ;
Bladt, Eva ;
Walters, Grant ;
Proppe, Andrew H. ;
Zou, Chengqin ;
Yuan, Haifeng ;
Bals, Sara ;
Hofkens, Johan ;
Roeffaers, Maarten B. J. ;
Hoogland, Sjoerd ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2019, 31 (17)
[28]   Efficient Spray-Coated Colloidal Quantum Dot Solar Cells [J].
Kramer, Illan J. ;
Minor, James C. ;
Moreno-Bautista, Gabriel ;
Rollny, Lisa ;
Kanjanaboos, Pongsakorn ;
Kopilovic, Damir ;
Thon, Susanna M. ;
Carey, Graham H. ;
Chou, Kang Wei ;
Zhitomirsky, David ;
Amassian, Aram ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2015, 27 (01) :116-121
[29]   Colloidal quantum dot solar cells on curved and flexible substrates [J].
Kramer, Illan J. ;
Moreno-Bautista, Gabriel ;
Minor, James C. ;
Kopilovic, Damir ;
Sargent, Edward H. .
APPLIED PHYSICS LETTERS, 2014, 105 (16)
[30]   10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent Polarity-Engineered Halide Passivation [J].
Lan, Xinzheng ;
Voznyy, Oleksandr ;
de Arquer, F. Pelayo Garcia ;
Liu, Mengxia ;
Xu, Jixian ;
Proppe, Andrew H. ;
Walters, Grant ;
Fan, Fengjia ;
Tan, Hairen ;
Liu, Min ;
Yang, Zhenyu ;
Hoogland, Sjoerd ;
Sargent, Edward H. .
NANO LETTERS, 2016, 16 (07) :4630-4634