Overview of results from the 2023 DIII-D negative triangularity campaign

被引:10
|
作者
Thome, K. E. [1 ]
Austin, M. E. [2 ]
Hyatt, A. [1 ]
Marinoni, A. [3 ]
Nelson, A. O. [4 ]
Paz-Soldan, C. [4 ]
Scotti, F. [5 ]
Boyes, W. [4 ]
Casali, L. [6 ]
Chrystal, C. [1 ]
Ding, S. [1 ]
Du, X. D. [1 ]
Eldon, D. [1 ]
Ernst, D. [7 ]
Hong, R. [8 ]
McKee, G. R. [9 ]
Mordijck, S. [10 ]
Sauter, O. [11 ]
Schmitz, L. [8 ]
Barr, J. L. [1 ]
Burke, M. G. [5 ]
Coda, S. [11 ]
Cote, T. B. [1 ]
Fenstermacher, M. E. [5 ]
Garofalo, A. [1 ]
Khabanov, F. O. [9 ]
Kramer, G. J. [12 ]
Lasnier, C. J. [5 ]
Logan, N. C. [4 ]
Lunia, P. [4 ]
McLean, A. G. [5 ]
Okabayashi, M. [12 ]
Shiraki, D. [13 ]
Stewart, S. [9 ]
Takemura, Y. [14 ]
Truong, D. D. [5 ]
Osborne, T. [1 ]
Van Zeeland, M. A. [1 ]
Victor, B. S. [5 ]
Wang, H. Q. [1 ]
Watkins, J. G. [15 ]
Wehner, W. P. [1 ]
Welander, A. S. [1 ]
Wilks, T. M. [7 ]
Yang, J. [12 ]
Yu, G. [16 ]
Zeng, L. [8 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] Univ Texas Austin, Inst Fus Studies, Austin, TX USA
[3] Univ Calif San Diego, San Diego, CA USA
[4] Columbia Univ, Columbia, NY USA
[5] Lawrence Livermore Natl Lab, Livermore, CA USA
[6] Univ Tennessee Knoxville, Knoxville, TN USA
[7] MIT, Plasma Sci & Fus Ctr, Cambridge, MA USA
[8] Univ Calif Los Angeles, Los Angeles, CA USA
[9] Univ Wisconsin Madison, Madison, WI USA
[10] William & Mary, Williamsburg, VA USA
[11] Swiss Plasma Ctr SPC, Lausanne, Switzerland
[12] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ USA
[13] Oak Ridge Natl Lab, Oak Ridge, TN USA
[14] Natl Inst Fus Sci, Toki, Japan
[15] Sandia Natl Labs, Livermore, CA USA
[16] Univ Calif Davis, Davis, CA USA
关键词
negative triangularity; NT edge; confinement; PLASMAS; ITER; JET;
D O I
10.1088/1361-6587/ad6f40
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Negative triangularity (NT) is a potentially transformative configuration for tokamak-based fusion energy with its high-performance core, edge localized mode (ELM)-free edge, and low-field-side divertors that could readily scale to an integrated reactor solution. Previous NT work on the TCV and DIII-D tokamaks motivated the installation of graphite-tile armor on the low-field-side lower outer wall of DIII-D. A dedicated multiple-week experimental campaign was conducted to qualify the NT scenario for future reactors. During the DIII-D NT campaign, high confinement (H-98y,H-2 greater than or similar to 1), high current (q(95)< 3), and high normalized pressure plasmas (beta(N)> 2.5) were simultaneously attained in strongly NT-shaped discharges with average triangularity delta(avg) = -0.5 that were stably controlled. Experiments covered a wide range of DIII-D operational space (plasma current, toroidal field, electron density and pressure) and did not trigger an ELM in a single discharge as long as sufficiently strong NT was maintained; in contrast, to other high-performance ELM-suppression scenarios that have narrower operating windows. These strong NT plasmas had a lower outer divertor X-point shape and maintained a non-ELMing edge with an electron temperature pedestal, exceeding that of typical L-mode plasmas. Also, the following was achieved during the campaign: high normalized density (n(e)/n(GW) of at least 1.7), particle confinement comparable to energy confinement with Z(eff)similar to 2, a detached divertor without impurity seeding, and a mantle radiation scenario using extrinsic impurities. These results are promising for a NT fusion pilot plant but further questions on confinement extrapolation and core-edge integration remain, which motivate future NT studies on DIII-D and beyond.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] MHD stability of negative triangularity DIII-D plasmas
    Boyes, W.
    Turco, F.
    Hanson, J.
    Marinoni, A.
    Turnbull, A.
    Austin, M.
    Navratil, G.
    NUCLEAR FUSION, 2023, 63 (08)
  • [2] Effect of rotation on negative triangularity plasmas in DIII-D
    Chrystal, C.
    Austin, M. E.
    Odstrcil, T.
    Paz-Soldan, C.
    Thome, K. E.
    Marinoni, A.
    Boyes, W.
    Osborne, T. H.
    Logan, N. C.
    Hyatt, A. W.
    Nelson, A. O.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (10)
  • [3] Vertical control of DIII-D discharges with strong negative triangularity
    Nelson, A. O.
    Hyatt, A.
    Wehner, W.
    Welander, A.
    Paz-Soldan, C.
    Osborne, T.
    Anand, H.
    Thome, K. E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (04)
  • [4] Characterization of the ELM-free negative triangularity edge on DIII-D
    Nelson, A. O.
    Schmitz, L.
    Cote, T.
    Parisi, J. F.
    Stewart, S.
    Paz-Soldan, C.
    Thome, K. E.
    Austin, M. E.
    Scotti, F.
    Barr, J. L.
    Hyatt, A.
    Leuthold, N.
    Marinoni, A.
    Neiser, T.
    Osborne, T.
    Richner, N.
    Welander, A. S.
    Wehner, W. P.
    Wilcox, R.
    Wilks, T. M.
    Yang, J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (10)
  • [5] Experimental characterization of turbulence properties in negative triangularity DIII-D plasmas
    Stewart, S. D.
    Mckee, G.
    Chrystal, C.
    Cote, T.
    Geiger, B.
    Khabanov, F.
    Nelson, A. O.
    Qin, X.
    Paz-Soldan, C.
    Schmitz, L.
    Thome, K. E.
    Yan, Z.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2025, 67 (02)
  • [6] Investigation of core impurity transport in DIII-D diverted negative triangularity plasmas
    Sciortino, F.
    Howard, N. T.
    Odstrcil, T.
    Austin, M.
    Bykov, I
    Chrystal, C.
    Haskey, S. R.
    Lore, J. D.
    Marinoni, A.
    Marmar, E. S.
    Meneghini, O.
    Paz-Soldan, C.
    Rodriguez-Fernandez, P.
    Smith, S. P.
    Thome, K. E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2022, 64 (12)
  • [7] Alfven eigenmodes and fast ion transport in negative triangularity DIII-D plasmas
    Van Zeeland, M. A.
    Collins, C. S.
    Heidbrink, W. W.
    Austin, M. E.
    Du, X. D.
    Duarte, V. N.
    Hyatt, A.
    Kramer, G.
    Gorelenkov, N.
    Grierson, B.
    Lin, D.
    Marinoni, A.
    McKee, G.
    Muscatello, C.
    Petty, C.
    Sung, C.
    Thome, K. E.
    Walker, M.
    Zhu, Y. B.
    NUCLEAR FUSION, 2019, 59 (08)
  • [8] Effects of negative triangularity shaping on energetic particle driven Alfven eigenmodes in DIII-D *
    Ghai, Y.
    Spong, D. A.
    Varela, J.
    Garcia, L.
    Van Zeeland, M. A.
    Austin, M. E.
    NUCLEAR FUSION, 2021, 61 (12)
  • [9] First observations of edge instabilities in strongly shaped negative triangularity plasmas on DIII-D
    Cote, T.
    Yu, G.
    Nelson, A. O.
    Leuthold, N.
    Richner, N.
    Stewart, S.
    Khabanov, F.
    Zhu, Y.
    Ebrahimi, F.
    King, J.
    Paz-Soldan, C.
    Schmitz, L.
    Thome, K. E.
    Austin, M. E.
    Scotti, F.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2025, 67 (03)
  • [10] Achievement of Reactor-Relevant Performance in Negative Triangularity Shape in the DIII-D Tokamak
    Austin, M. E.
    Marinoni, A.
    Walker, M. L.
    Brookman, M. W.
    deGrassie, J. S.
    Hyatt, A. W.
    McKee, G. R.
    Petty, C. C.
    Rhodes, T. L.
    Smith, S. P.
    Sung, C.
    Thome, K. E.
    Turnbull, A. D.
    PHYSICAL REVIEW LETTERS, 2019, 122 (11)