YOLO-RLDW: An Algorithm for Object Detection in Aerial Images Under Complex Backgrounds

被引:1
作者
Zhao, Liangjun [1 ]
Liang, Gang [1 ]
Hu, Yueming [2 ]
Xi, Yubin [1 ]
Ning, Feng [3 ]
He, Zhongliang [1 ]
机构
[1] Sichuan Univ Sci & Engn, Sch Comp Sci & Engn, Yibin 644000, Peoples R China
[2] Hainan Univ, Sch Trop Agr & Forestry, Haikou 570228, Hainan, Peoples R China
[3] Sichuan Univ Sci & Engn, Sch Automat & Informat Engn, Yibin 644000, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Accuracy; Task analysis; YOLO; Signal processing algorithms; Satellite images; Deep learning; Aerial image; object detection; deep learning; complex background; YOLO-RLDW; TARGET DETECTION;
D O I
10.1109/ACCESS.2024.3414620
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming at the challenges of low detection accuracy, susceptibility to complex background interference, difficulty in detecting small objects, and multi-scale object issues in aerial images, our proposed an improved YOLOv8-based object detection algorithm, named YOLO-RLDW. Leveraging the advantages of Receptive Field Attention Convolution (RFAConv), we designed a feature extraction module named C2f-RFA to enhance the feature extraction capability for small objects in aerial images. Inspired by the concept of Large Separable Kernel Attention (LSKA), we developed the SPPF-LSKA module, which effectively reduces the interference of aerial backgrounds in object detection. We replaced the YOLOv8 detection head with a Dynamic Head (DyHead), further enhancing the model's generalization and adaptability. Finally, we employed as boundary box regression loss based on a dynamic focusing mechanism, WIoU, as the loss function, which accelerates model convergence while improving the localization capability for multi-scale objects. Experimental results demonstrate that on the VisDrone2021 dataset, the proposed algorithm achieves improvements of 5.5%, 3.9%, 5.4%, and 3.7% in precision (P), recall (R), mean average precision (mAP50), and mAP95, respectively, compared to the original algorithm. On our self-built remote sensing image dataset RSI, the accuracy, recall, and mean average precision reach 94.2%, 91.0%, and 95.4%, respectively, demonstrating good performance in detecting objects in aerial images. Comparison with other mainstream object detection algorithms validates the effectiveness and superiority of the proposed method.
引用
收藏
页码:128677 / 128693
页数:17
相关论文
共 39 条
[1]  
Ajay A, 2017, 2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), P1620, DOI 10.1109/ICCSP.2017.8286664
[2]   YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Selection in Aerial Imagery [J].
Betti, Alessandro ;
Tucci, Mauro .
SENSORS, 2023, 23 (04)
[3]  
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, DOI 10.48550/ARXIV.2004.10934]
[4]   Cascade R-CNN: Delving into High Quality Object Detection [J].
Cai, Zhaowei ;
Vasconcelos, Nuno .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6154-6162
[5]   UAV small target detection algorithm based on an improved YOLOv5s model [J].
Cao, Shihai ;
Wang, Ting ;
Li, Tao ;
Mao, Zehui .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 97
[6]   VisDrone-DET2021: The Vision Meets Drone Object detection Challenge Results [J].
Cao, Yaru ;
He, Zhijian ;
Wang, Lujia ;
Wang, Wenguan ;
Yuan, Yixuan ;
Zhang, Dingwen ;
Zhang, Jinglin ;
Zhu, Pengfei ;
Van Gool, Luc ;
Han, Junwei ;
Hoi, Steven ;
Hu, Qinghua ;
Liu, Ming ;
Cheng, Chong ;
Liu, Fanfan ;
Cao, Guojin ;
Li, Guozhen ;
Wang, Hongkai ;
He, Jianye ;
Wan, Junfeng ;
Wan, Qi ;
Zhao, Qi ;
Lyu, Shuchang ;
Zhao, Wenzhe ;
Lu, Xiaoqiang ;
Zhu, Xingkui ;
Liu, Yingjie ;
Lv, Yixuan ;
Ma, Yujing ;
Yang, Yuting ;
Wang, Zhe ;
Xu, Zhenyu ;
Luo, Zhipeng ;
Zhang, Zhimin ;
Zhang, Zhiguang ;
Li, Zihao ;
Zhang, Zixiao .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, :2847-2854
[7]   Occlusion and multi-scale pedestrian detection A review [J].
Chen, Wei ;
Zhu, Yuxuan ;
Tian, Zijian ;
Zhang, Fan ;
Yao, Minda .
ARRAY, 2023, 19
[8]   Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images [J].
Cheng, Gong ;
Zhou, Peicheng ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12) :7405-7415
[9]   Dynamic Head: Unifying Object Detection Heads with Attentions [J].
Dai, Xiyang ;
Chen, Yinpeng ;
Xiao, Bin ;
Chen, Dongdong ;
Liu, Mengchen ;
Yuan, Lu ;
Zhang, Lei .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :7369-7378
[10]  
De Ocampo Anton Louise P., 2023, 2023 International Electrical Engineering Congress (iEECON), P89, DOI 10.1109/iEECON56657.2023.10126902