High absorptivity nanotextured powders for additive manufacturing

被引:1
作者
Tertuliano, Ottman A. [1 ,2 ]
Depond, Philip J. [2 ,3 ]
Lee, Andrew C. [4 ]
Hong, Jiho [4 ]
Doan, David [2 ]
Capaldi, Luc [1 ]
Brongersma, Mark [4 ]
Gu, X. Wendy [2 ]
Matthews, Manyalibo J. [3 ]
Cai, Wei [2 ]
Lew, Adrian J. [2 ]
机构
[1] Univ Penn, Mech Engn & Appl Mech, 220 S 33rd St, Philadelphia, PA 19104 USA
[2] Stanford Univ, Mech Engn, 452 Escondido Mall, Stanford, CA 94305 USA
[3] Lawrence Livermore Natl Lab, Mat Sci Div, 7000 East Ave, Livermore, CA 94550 USA
[4] Stanford Univ, Mat Sci & Engn, 496 Lomita Mall, Suite 102, Stanford, CA 94305 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 36期
基金
美国国家科学基金会;
关键词
SELECTIVE LASER; TUNGSTEN; STEEL; DENUDATION; REFLECTION; MECHANISMS; PARAMETER; DESIGN; CU;
D O I
10.1126/sciadv.adp0003
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The widespread application of metal additive manufacturing (AM) is limited by the ability to control the complex interactions between the energy source and the feedstock material. Here, we develop a generalizable process to introduce nanoscale grooves to the surface of metal powders which increases the powder absorptivity by up to 70% during laser powder bed fusion. Absorptivity enhancements in copper, copper-silver, and tungsten enable energy-efficient manufacturing, with printing of pure copper at relative densities up to 92% using laser energy densities as low as 83 joules per cubic millimeter. Simulations show that the enhanced powder absorptivity results from plasmon-enabled light concentration in nanoscale grooves combined with multiple scattering events. The approach taken here demonstrates a general method to enhance the absorptivity and printability of reflective and refractory metal powders by changing the surface morphology of the feedstock without altering its composition.
引用
收藏
页数:11
相关论文
共 62 条
  • [1] Aboulkhair NT, 2014, ADDIT MANUF, V1-4, P77, DOI [DOI 10.1016/J.ADDMA.2014.08.001, 10.1016/j.addma.2014.08.001]
  • [2] Thermo-plasmonics: using metallic nanostructures as nano-sources of heat
    Baffou, Guillaume
    Quidant, Romain
    [J]. LASER & PHOTONICS REVIEWS, 2013, 7 (02) : 171 - 187
  • [3] Metal powder absorptivity: modeling and experiment
    Boley, C. D.
    Mitchell, S. C.
    Rubenchik, A. M.
    Wu, S. S. Q.
    [J]. APPLIED OPTICS, 2016, 55 (23) : 6496 - 6500
  • [4] Calculation of laser absorption by metal powders in additive manufacturing
    Boley, C. D.
    Khairallah, S. A.
    Rubenchik, A. M.
    [J]. APPLIED OPTICS, 2015, 54 (09) : 2477 - 2482
  • [5] Bright-White Beetle Scales Optimise Multiple Scattering of Light
    Burresi, Matteo
    Cortese, Lorenzo
    Pattelli, Lorenzo
    Kolle, Mathias
    Vukusic, Peter
    Wiersma, Diederik S.
    Steiner, Ullrich
    Vignolini, Silvia
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [6] Selective laser melting of pure Cu with a 1 kW single mode fiber laser
    Colopi, M.
    Caprio, L.
    Demir, A. G.
    Previtali, B.
    [J]. 10TH CIRP CONFERENCE ON PHOTONIC TECHNOLOGIES [LANE 2018], 2018, 74 : 59 - 63
  • [7] Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser
    Colopi, Matteo
    Demir, Ali Gokhan
    Caprio, Leonardo
    Previtali, Barbara
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 104 (5-8) : 2473 - 2486
  • [8] Additive manufacturing of metallic components - Process, structure and properties
    DebRoy, T.
    Wei, H. L.
    Zuback, J. S.
    Mukherjee, T.
    Elmer, J. W.
    Milewski, J. O.
    Beese, A. M.
    Wilson-Heid, A.
    De, A.
    Zhang, W.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2018, 92 : 112 - 224
  • [9] In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry
    DePond, Philip J.
    Guss, Gabe
    Ly, Sonny
    Calta, Nicholas P.
    Deane, Dave
    Khairallah, Saad
    Matthews, Manyalibo J.
    [J]. MATERIALS & DESIGN, 2018, 154 : 347 - 359
  • [10] Dilip JJS, 2017, Progr Addit Manuf, V2, P157, DOI DOI 10.1007/S40964-017-0030-2