Radiomics and Deep Features: Robust Classification of Brain Hemorrhages and Reproducibility Analysis Using a 3D Autoencoder Neural Network

被引:39
作者
Bijari, Salar [1 ]
Sayfollahi, Sahar [2 ]
Mardokh-Rouhani, Shiwa [3 ]
Bijari, Sahar [4 ]
Moradian, Sadegh [5 ]
Zahiri, Ziba [6 ]
Rezaeijo, Seyed Masoud [7 ,8 ]
机构
[1] Kurdistan Univ Med Sci, Fac Paramed, Dept Radiol, POB 66177-13446, Sanandaj, Iran
[2] Iran Univ Med Sci, Sch Med, Dept Neurosurg, POB 14496-14535, Tehran, Iran
[3] Univ Kurdistan, Fac Engn, Mech Engn Grp, POB 66177-15175, Sanandaj, Iran
[4] Shahid Sadoughi Univ Med Sci, Sch Publ Hlth, Dept Aging & Hlth, POB 89151-73160, Yazd, Iran
[5] Univ Tehran Med Sci, Dept Radiol, POB 14197-33151, Tehran, Iran
[6] Ahvaz Jundishapur Univ Med Sci, Golestan Hosp, Dept Radiat Oncol, POB 61357-15794, Ahvaz, Iran
[7] Ahvaz Jundishapur Univ Med Sci, Fac Med, Dept Med Phys, PO Box 61357-15794, Ahvaz, Iran
[8] Ahvaz Jundishapur Univ Med Sci, Canc Res Ctr, POB 61357-15794, Ahvaz, Iran
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 07期
关键词
reproducible; brain; hemorrhage; radiomics features; deep features; machine learning;
D O I
10.3390/bioengineering11070643
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This study evaluates the reproducibility of machine learning models that integrate radiomics and deep features (features extracted from a 3D autoencoder neural network) to classify various brain hemorrhages effectively. Using a dataset of 720 patients, we extracted 215 radiomics features (RFs) and 15,680 deep features (DFs) from CT brain images. With rigorous screening based on Intraclass Correlation Coefficient thresholds (>0.75), we identified 135 RFs and 1054 DFs for analysis. Feature selection techniques such as Boruta, Recursive Feature Elimination (RFE), XGBoost, and ExtraTreesClassifier were utilized alongside 11 classifiers, including AdaBoost, CatBoost, Decision Trees, LightGBM, Logistic Regression, Naive Bayes, Neural Networks, Random Forest, Support Vector Machines (SVM), and k-Nearest Neighbors (k-NN). Evaluation metrics included Area Under the Curve (AUC), Accuracy (ACC), Sensitivity (SEN), and F1-score. The model evaluation involved hyperparameter optimization, a 70:30 train-test split, and bootstrapping, further validated with the Wilcoxon signed-rank test and q-values. Notably, DFs showed higher accuracy. In the case of RFs, the Boruta + SVM combination emerged as the optimal model for AUC, ACC, and SEN, while XGBoost + Random Forest excelled in F1-score. Specifically, RFs achieved AUC, ACC, SEN, and F1-scores of 0.89, 0.85, 0.82, and 0.80, respectively. Among DFs, the ExtraTreesClassifier + Naive Bayes combination demonstrated remarkable performance, attaining an AUC of 0.96, ACC of 0.93, SEN of 0.92, and an F1-score of 0.92. Distinguished models in the RF category included SVM with Boruta, Logistic Regression with XGBoost, SVM with ExtraTreesClassifier, CatBoost with XGBoost, and Random Forest with XGBoost, each yielding significant q-values of 42. In the DFs realm, ExtraTreesClassifier + Naive Bayes, ExtraTreesClassifier + Random Forest, and Boruta + k-NN exhibited robustness, with 43, 43, and 41 significant q-values, respectively. This investigation underscores the potential of synergizing DFs with machine learning models to serve as valuable screening tools, thereby enhancing the interpretation of head CT scans for patients with brain hemorrhages.
引用
收藏
页数:23
相关论文
共 43 条
[1]   A comparison of performance between a deep learning model with residents for localization and classification of intracranial hemorrhage [J].
Angkurawaranon, Salita ;
Sanorsieng, Nonn ;
Unsrisong, Kittisak ;
Inkeaw, Papangkorn ;
Sripan, Patumrat ;
Khumrin, Piyapong ;
Angkurawaranon, Chaisiri ;
Vaniyapong, Tanat ;
Chitapanarux, Imjai .
SCIENTIFIC REPORTS, 2023, 13 (01)
[2]   Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration [J].
Arbabshirani, Mohammad R. ;
Fornwalt, Brandon K. ;
Mongelluzzo, Gino J. ;
Suever, Jonathan D. ;
Geise, Brandon D. ;
Patel, Aalpen A. ;
Moore, Gregory J. .
NPJ DIGITAL MEDICINE, 2018, 1
[3]   Machine and deep learning methods for radiomics [J].
Avanzo, Michele ;
Wei, Lise ;
Stancanello, Joseph ;
Vallieres, Martin ;
Rao, Arvind ;
Morin, Olivier ;
Mattonen, Sarah A. ;
El Naqa, Issam .
MEDICAL PHYSICS, 2020, 47 (05) :E185-E202
[4]   Non-invasive radiomics nomogram model for determining the low and high-grade glioma base on MRI images [J].
Bijari, S. ;
Jahanbakhshi, A. ;
Abdolmaleki, P. .
INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2023, 21 (02) :275-280
[5]   Differentiating Glioblastoma Multiforme from Brain Metastases Using Multidimensional Radiomics Features Derived from MRI and Multiple Machine Learning Models [J].
Bijari, Salar ;
Jahanbakhshi, Amin ;
Hajishafiezahramini, Parham ;
Abdolmaleki, Parviz .
BIOMED RESEARCH INTERNATIONAL, 2022, 2022
[6]   Computer aided detection of small acute intracranial hemorrhage on computer tomography of brain [J].
Chan, Tao .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (4-5) :285-298
[7]   Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT [J].
Chang, P. D. ;
Kuoy, E. ;
Grinband, J. ;
Weinberg, B. D. ;
Thompson, M. ;
Homo, R. ;
Chen, J. ;
Abcede, H. ;
Shafie, M. ;
Sugrue, L. ;
Filippi, C. G. ;
Su, M. -Y. ;
Yu, W. ;
Hess, C. ;
Chow, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (09) :1609-1616
[8]   Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study [J].
Chilamkurthy, Sasank ;
Ghosh, Rohit ;
Tanamala, Swetha ;
Biviji, Mustafa ;
Campeau, Norbert G. ;
Venugopal, Vasantha Kumar ;
Mahajan, Vidur ;
Rao, Pooja ;
Warier, Prashant .
LANCET, 2018, 392 (10162) :2388-2396
[9]   Long-term study of vocal dysfunction and quality of life in patients with non-laryngeal head and neck cancers post chemo-radiation therapy: Results of prospective analysis [J].
Fadavi, P. ;
Bagherzadeh, S. ;
Torabinezhad, F. ;
Goli-Ahmadabad, F. ;
Beiki, M. ;
Bijari, S. ;
Sayfollahi, S. ;
Momeni, Z. .
INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2023, 21 (02) :227-232
[10]  
Fatan M., 2022, 3D head and neck tumor segmentation in PET/CT challenge, V13209, P211