Data-Driven Model Predictive Control for Redundant Manipulators With Unknown Model

被引:12
作者
Yan, Jingkun [1 ,2 ]
Jin, Long [1 ,2 ]
Hu, Bin [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China
[2] Jishou Univ, Coll Informat Sci & Engn, Jishou 416000, Peoples R China
基金
中国国家自然科学基金;
关键词
Manipulators; Task analysis; Manipulator dynamics; Robots; Kinematics; Jacobian matrices; Analytical models; Model predictive control (MPC); neural dynamics (ND); redundant manipulators; unknown model; RECURRENT NEURAL-NETWORKS; ROBOT MANIPULATORS; TRACKING CONTROL; MPC; ROBUST; SAFE; UNCERTAINTY; STABILITY; SCHEME;
D O I
10.1109/TCYB.2024.3408254
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The tracking control of redundant manipulators plays a crucial role in robotics research and generally requires accurate knowledge of models of redundant manipulators. When the model information of a redundant manipulator is unknown, the trajectory-tracking control with model-based methods may fail to complete a given task. To this end, this article proposes a data-driven neural dynamics-based model predictive control (NDMPC) algorithm, which consists of a model predictive control (MPC) scheme, a neural dynamics (ND) solver, and a discrete-time Jacobian matrix (DTJM) updating law. With the help of the DTJM updating law, the future output of the model-unknown redundant manipulator is predicted, and the MPC scheme for trajectory tracking is constructed. The ND solver is designed to solve the MPC scheme to generate control input driving the redundant manipulator. The convergence of the proposed data-driven NDMPC algorithm is proven via theoretical analyses, and its feasibility and superiority are demonstrated via simulations and experiments on a redundant manipulator. Under the drive of the proposed algorithm, the redundant manipulator successfully carries out the trajectory-tracking task without the need for its kinematics model.
引用
收藏
页码:5901 / 5911
页数:11
相关论文
共 53 条
  • [1] Deep Learning-Based Long-Horizon MPC: Robust, High Performing, and Computationally Efficient Control for PMSM Drives
    Abu-Ali, Mohammad
    Berkel, Felix
    Manderla, Maximilian
    Reimann, Sven
    Kennel, Ralph
    Abdelrahem, Mohamed
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (10) : 12486 - 12501
  • [2] Bazaraa MS, 2013, Nonlinear Programming: Theory and Algorithms
  • [3] Data-Driven Model Predictive Control for Trajectory Tracking With a Robotic Arm
    Carron, Andrea
    Arcari, Elena
    Wermelinger, Martin
    Hewing, Lukas
    Hutter, Marco
    Zeilinger, Melanie N.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3758 - 3765
  • [4] A penalized Fischer-Burmeister NCP-function
    Chen, BT
    Chen, XJ
    Kanzow, C
    [J]. MATHEMATICAL PROGRAMMING, 2000, 88 (01) : 211 - 216
  • [5] Tracking Control of Robot Manipulators with Unknown Models: A Jacobian-Matrix-Adaption Method
    Chen, Dechao
    Zhang, Yunong
    Li, Shuai
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (07) : 3044 - 3053
  • [6] Multimodality Driven Impedance-Based Sim2Real Transfer Learning for Robotic Multiple Peg-in-Hole Assembly
    Chen, Wenkai
    Zeng, Chao
    Liang, Hongzhuo
    Sun, Fuchun
    Zhang, Jianwei
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (05) : 2784 - 2797
  • [7] Bayesian Neural Network Modeling and Hierarchical MPC for a Tendon-Driven Surgical Robot With Uncertainty Minimization
    Cursi, Francesco
    Modugno, Valerio
    Lanari, Leonardo
    Oriolo, Giuseppe
    Kormushev, Petar
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02): : 2642 - 2649
  • [8] Robust Model Predictive Tracking Control for Robot Manipulators With Disturbances
    Dai, Li
    Yu, Yuantao
    Zhai, Di-Hua
    Huang, Teng
    Xia, Yuanqing
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (05) : 4288 - 4297
  • [9] An EKF-Based Fast Tube MPC Scheme for Moving Target Tracking of a Redundant Underwater Vehicle-Manipulator System
    Dai, Yong
    Yu, Shuanghe
    Yan, Yan
    Yu, Xinghuo
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2019, 24 (06) : 2803 - 2814
  • [10] Data-Driven Motion-Force Control Scheme for Redundant Manipulators: A Kinematic Perspective
    Fan, Jialiang
    Jin, Long
    Xie, Zhengtai
    Li, Shuai
    Zheng, Yu
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (08) : 5338 - 5347