ON THE INVARIANCE EQUATION FOR MEANS OF GENERALIZED POWER GROWTH

被引:0
作者
Pasteczka, Pawe [1 ]
机构
[1] Univ Natl Educ Commiss, Inst Math, Podchorazych str 2, PL-30084 Krakow, Poland
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2024年 / 27卷 / 03期
关键词
Invariant means; monomial; power means; Gini means; power growth;
D O I
10.7153/mia-2024-27-48
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the result of (Witkowski, 2014) which binds orders of homogeneous, symmetric means M,N,K: , N , K : R-+(2) -> R + of power growth that satisfy the invariance equation K ( M ( x , y ) , N ( x , y )) =K(x,y) K ( x , y ) to the broader class of means. Moreover, we define the lower- and the upper-order which gives us insight into the order of the solution of this equation in the case when means do not belong to this class.
引用
收藏
页码:691 / 702
页数:12
相关论文
共 8 条
  • [1] Borwein J.M., 1987, CANADIAN MATH SOC SE
  • [2] LOGARITHMIC MEAN
    CARLSON, BC
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (06) : 615 - &
  • [3] Daroczy Z., 1970, PUBL MATH DEBR, V17, P289
  • [4] Gauss C.F., 1818, Werke 3 (Gottingem 1876), P357
  • [5] GINI CORRADO, 1938, METRON, V13, P3
  • [6] Invariance of means
    Jarczyk, Justyna
    Jarczyk, Witold
    [J]. AEQUATIONES MATHEMATICAE, 2018, 92 (05) : 801 - 872
  • [7] INEQUALITIES FOR SUMS OF POWERS
    PALES, Z
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 131 (01) : 265 - 270
  • [8] ON INVARIANCE EQUATION FOR MEANS OF POWER GROWTH
    Witkowski, Alfred
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (03): : 1091 - 1094