Centric graph regularized log-norm sparse non-negative matrix factorization for multi-view

被引:20
|
作者
Dong, Yuzhu [1 ,2 ]
Che, Hangjun [2 ,3 ,4 ]
Leung, Man-Fai [5 ]
Liu, Cheng [6 ]
Yan, Zheng [7 ]
机构
[1] Southwest Univ, Coll Westa, Chongqing, Peoples R China
[2] Southwest Univ, Coll Elect & Informat Engn, Chongqing, Peoples R China
[3] Chongqing Key Lab Nonlinear Circuits & Intelligent, Chongqing, Peoples R China
[4] South Cent Minzu Univ, Key Lab Cyber Phys Fus Intelligent Comp, State Ethn Affairs Commiss, Wuhan, Peoples R China
[5] Anglia Ruskin Univ, Fac Sci & Engn, Sch Comp & Informat Sci, Cambridge, England
[6] Shantou Univ, Dept Comp Sci, Shantou, Peoples R China
[7] Univ Technol Sydney, Sydney, Australia
基金
中国国家自然科学基金;
关键词
Multi-view learning; Non-negative matrix factorization; Pairwise co-regularization; Centric graph regularization; ADAPTIVE GRAPH; ROBUST;
D O I
10.1016/j.sigpro.2023.109341
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multi-view non-negative matrix factorization (NMF) provides a reliable method to analyze multiple views of data for low-dimensional representation. A variety of multi-view learning methods have been developed in recent years, demonstrating successful applications in clustering. However, existing methods in multi-view learning often tend to overlook the non-linear relationships among data and the significance of the similarity of internal views, both of which are essential in multi-view tasks. Meanwhile, the mapping between the obtained representation and the original data typically contains complex hidden information that deserves to be thoroughly explored. In this paper, a novel multi-view NMF is proposed that explores the local geometric structure among multi-dimensional data and learns the hidden representation of different attributes through centric graph regularization and pairwise co-regularization of the coefficient matrix. In addition, the proposed model is further sparsified with l 2 ,log-(pseudo) norm to efficiently generate sparse solutions. As a result, the model obtains a better part-based representation, enhancing its robustness and applicability in complex noisy scenarios. An effective iterative update algorithm is designed to solve the proposed model, and the convergence of the algorithm is proven to be theoretically guaranteed. The effectiveness of the proposed method is verified by comparing it with nine state-of-the-art methods in clustering tasks of eight public datasets.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Dual regularized multi-view non-negative matrix factorization for clustering
    Luo, Peng
    Peng, Jinye
    Guan, Ziyu
    Fan, Jianping
    NEUROCOMPUTING, 2018, 294 : 1 - 11
  • [2] Graph regularized sparse non-negative matrix factorization for clustering
    Deng, Ping
    Wang, Hongjun
    Li, Tianrui
    Zhao, Hui
    Wu, Yanping
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 987 - 994
  • [3] Multi-View Clustering Based on Multiple Manifold Regularized Non-Negative Sparse Matrix Factorization
    Khan, Mohammad Ahmar
    Khan, Ghufran Ahmad
    Khan, Jalaluddin
    Khan, Mohammad Rafeek
    Atoum, Ibrahim
    Ahmad, Naved
    Shahid, Mohammad
    Ishrat, Mohammad
    Alghamdi, Abdulrahman Abdullah
    IEEE ACCESS, 2022, 10 : 113249 - 113259
  • [4] Graph Regularized Sparse Non-Negative Matrix Factorization for Clustering
    Deng, Ping
    Li, Tianrui
    Wang, Hongjun
    Wang, Dexian
    Horng, Shi-Jinn
    Liu, Rui
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (03) : 910 - 921
  • [5] Multi-view clustering via multi-manifold regularized non-negative matrix factorization
    Zong, Linlin
    Zhang, Xianchao
    Zhao, Long
    Yu, Hong
    Zhao, Qianli
    NEURAL NETWORKS, 2017, 88 : 74 - 89
  • [6] Consensus and complementary regularized non-negative matrix factorization for multi-view image clustering
    Li, Guopeng
    Song, Dan
    Bai, Wei
    Han, Kun
    Tharmarasa, Ratnasingham
    INFORMATION SCIENCES, 2023, 623 : 524 - 538
  • [7] FEATURE EXTRACTION VIA MULTI-VIEW NON-NEGATIVE MATRIX FACTORIZATION WITH LOCAL GRAPH REGULARIZATION
    Wang, Zhenfan
    Kong, Xiangwei
    Fu, Haiyan
    Li, Ming
    Zhang, Yujia
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3500 - 3504
  • [8] A network-based sparse and multi-manifold regularized multiple non-negative matrix factorization for multi-view clustering
    Zhou, Lihua
    Du, Guowang
    Lu, Kevin
    Wang, Lizhen
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 174
  • [9] A locally weighted sparse graph regularized Non-Negative Matrix Factorization method
    Feng, Yinfu
    Xiao, Jun
    Zhou, Kang
    Zhuang, Yueting
    NEUROCOMPUTING, 2015, 169 : 68 - 76
  • [10] Semi-supervised multi-view clustering with Graph-regularized Partially Shared Non-negative Matrix Factorization
    Liang, Naiyao
    Yang, Zuyuan
    Li, Zhenni
    Xie, Shengli
    Su, Chun-Yi
    KNOWLEDGE-BASED SYSTEMS, 2020, 190