Bimetallic MOF-derived manganese-cobalt composite oxide as high-performance zinc-ion batteries cathode

被引:1
|
作者
Ma, Bingzhe [1 ]
Zhang, Youfeng [1 ]
Feng, Yaping [1 ]
Wang, Sikai [1 ]
Wang, Yinling [2 ]
Zhang, Wenzhu [3 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mat Sci & Engn, Shanghai 201620, Peoples R China
[2] Huanghuai Univ, Henan Engn Lab New Energy Convers & Control Techno, Zhumadian 463000, Henan, Peoples R China
[3] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
关键词
MOFs; Cathode; Zinc-ions batteries; Bimetallic oxide; HIGH-CAPACITY; MNCO2O4; CHALLENGES;
D O I
10.1007/s10008-024-06050-x
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The designing cathode materials of aqueous zinc-ion batteries (AZIBs) with high performance is significant challenges in the development of AZIBs. Metal-organic frameworks (MOFs) are considered prime candidates for cathode modification and high-performance cathode materials. Herein, a two-step hydrothermal method was employed to fabricate a bimetallic metal-organic framework MnCo-MOF on carbon cloth. The resulting precursor was calcined to produce a cathode composite MnCo2O4. As a cathode for AZIBs, MnCo2O4/CC exhibited an average specific capacity of 280.6 mAh/g. Upon completion of the cycle at a current density of 0.2 A/g, the specific capacity measured 275.1 mAh/g (retaining 98% of its initial capacity), while maintaining a coulombic efficiency of approximately 98.5%. The excellent cycling performance, superior specific capacity, and superb coulombic efficiency are ascribed to the concerted influence of the polymetallic ions. The micro and nano scale interconnected block structure of MnCo2O4 facilitates interaction between electrode substance and the electrolyte. This research broadens the selection of cathode material and offers valuable guidance for designing high-performance cathode materials for AZIBs.
引用
收藏
页码:239 / 248
页数:10
相关论文
共 50 条
  • [41] Multi-Functional Potassium Ion Assists Ammonium Vanadium Oxide Cathode for High-Performance Aqueous Zinc-Ion Batteries
    He, Dan
    Sun, Tianjiang
    Wang, Qiaoran
    Ma, Tao
    Zheng, Shibing
    Tao, Zhanliang
    Liang, Jing
    BATTERIES-BASEL, 2022, 8 (08):
  • [42] Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries
    Luo, Ping
    Zhang, Wenwei
    Wang, Shiyu
    Liu, Gangyuan
    Xiao, Yao
    Zuo, Chunli
    Tang, Wen
    Fu, Xudong
    Dong, Shijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 884
  • [43] Unraveling high-performance oxygen-deficient amorphous manganese oxide as the cathode for advanced zinc ion batteries
    Karbak, Mehdi
    Baazizi, Mariam
    Sayah, Simon
    Autret-Lambert, Cecile
    Tison, Yann
    Martinez, Herve
    Chafik, Tarik
    Ghamouss, Fouad
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (06) : 2634 - 2640
  • [44] Zn-doped manganese tetroxide/graphene oxide cathode materials for high-performance aqueous zinc-ion battery
    Ge, Linheng
    Zhang, Hong
    Wang, Zirui
    Gao, Qingli
    Ren, Manman
    Cai, Xiaoxia
    Liu, Qinze
    Liu, Weiliang
    Yao, Jinshui
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2024, 112 (01) : 15 - 24
  • [45] Synthesis of three-dimensional β-MnO2/PPy composite for high-performance cathode in zinc-ion batteries
    Liao, Xiaobo
    Pan, Chengling
    Pan, Yusong
    Yin, Chengjie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 888
  • [46] Crystalline MnCO3@Amorphous MnOx Composite as Cathode Material for High-Performance Aqueous Zinc-Ion Batteries
    Chen, Ting
    Zhao, Shuo
    Liu, Yuanfeng
    Li, Guochun
    Cui, Yingxue
    Qiu, Jingxia
    Lian, Jiabiao
    Zhang, Bo
    INORGANIC CHEMISTRY, 2024, 63 (21) : 9864 - 9876
  • [47] High-performance zinc-ion battery cathode enabled by deficient manganese monoxide/graphene heterostructures
    Guo, Yixuan
    Zhao, Zedong
    Zhang, Jiajia
    Liu, Yicheng
    Hu, Bo
    Zhang, Yixiang
    Ge, Yuanhang
    Lu, Hongbin
    ELECTROCHIMICA ACTA, 2022, 411
  • [48] Coordinately Unsaturated Manganese-Based Metal-Organic Frameworks as a High-Performance Cathode for Aqueous Zinc-Ion Batteries
    Yin, Chengjie
    Pan, Chengling
    Liao, Xiaobo
    Pan, Yusong
    Yuan, Liang
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (30) : 35837 - 35847
  • [49] Metal ions and organic molecule co-intercalated vanadium oxide cathode for high-performance zinc-ion batteries
    Hu, Liang
    Sun, Qinghe
    Cai, Hongkun
    Ni, Jian
    Zhang, Jianjun
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 177
  • [50] Na+ Intercalated V2O5 Derived from V-MOF as High-Performance Cathode for Aqueous Zinc-Ion Batteries
    Liu, Mengmei
    Li, Zhihua
    Zhang, Yibo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (11)