S-Adapter: Generalizing Vision Transformer for Face Anti-Spoofing With Statistical Tokens

被引:2
|
作者
Cai, Rizhao [1 ]
Yu, Zitong [2 ]
Kong, Chenqi [1 ]
Li, Haoliang [3 ]
Chen, Changsheng [4 ,5 ]
Hu, Yongjian [6 ,7 ]
Kot, Alex C. [1 ]
机构
[1] Nanyang Technol Univ, Sch EEE, ROSE Lab, Singapore 639798, Singapore
[2] Great Bay Univ, Sch Comp & Informat Technol, Shantou 523000, Peoples R China
[3] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[4] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen Key Lab Media Secur, State Key Lab Radiofrequency Heterogeneous Integra, Shenzhen 518060, Peoples R China
[5] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[6] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 511442, Peoples R China
[7] China Singapore Int Joint Res Inst, Guangzhou 510555, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptation models; Face recognition; Training; Histograms; Data models; Feature extraction; Faces; Vision transformer (ViT); adapter; histogram; face anti-spoofing; face presentation attack detection; domain generalization; PRESENTATION ATTACK DETECTION; ADAPTATION;
D O I
10.1109/TIFS.2024.3420699
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Face Anti-Spoofing (FAS) aims to detect malicious attempts to invade a face recognition system by presenting spoofed faces. State-of-the-art FAS techniques predominantly rely on deep learning models but their cross-domain generalization capabilities are often hindered by the domain shift problem, which arises due to different distributions between training and testing data. In this study, we develop a generalized FAS method under the Efficient Parameter Transfer Learning (EPTL) paradigm, where we adapt the pre-trained Vision Transformer models for the FAS task. During training, the adapter modules are inserted into the pre-trained ViT model, and the adapters are updated while other pre-trained parameters remain fixed. We find the limitations of previous vanilla adapters in that they are based on linear layers, which lack a spoofing-aware inductive bias and thus restrict the cross-domain generalization. To address this limitation and achieve cross-domain generalized FAS, we propose a novel Statistical Adapter (S-Adapter) that gathers local discriminative and statistical information from localized token histograms. To further improve the generalization of the statistical tokens, we propose a novel Token Style Regularization (TSR), which aims to reduce domain style variance by regularizing Gram matrices extracted from tokens across different domains. Our experimental results demonstrate that our proposed S-Adapter and TSR provide significant benefits in both zero-shot and few-shot cross-domain testing, outperforming state-of-the-art methods on several benchmark tests. We will release the source code upon acceptance.
引用
收藏
页码:8385 / 8397
页数:13
相关论文
共 50 条
  • [21] Domain-Adaptive Energy-Based Models for Generalizable Face Anti-Spoofing
    Zhang, Dan
    Du, Zhekai
    Li, Jingjing
    Zhu, Lei
    Shen, Heng Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10474 - 10488
  • [22] Face Anti-Spoofing With Deep Neural Network Distillation
    Li, Haoliang
    Wang, Shiqi
    He, Peisong
    Rocha, Anderson
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (05) : 933 - 946
  • [23] 3D Face Anti-Spoofing With Factorized Bilinear Coding
    Jia, Shan
    Li, Xin
    Hu, Chuanbo
    Guo, Guodong
    Xu, Zhengquan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (10) : 4031 - 4045
  • [24] Learning Multi-Granularity Temporal Characteristics for Face Anti-Spoofing
    Wang, Zhuo
    Wang, Qiangchang
    Deng, Weihong
    Guo, Guodong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1254 - 1269
  • [25] KDFAS: Multi-stage Knowledge Distillation Vision Transformer for Face Anti-spoofing
    Zhang, Jun
    Zhang, Yunfei
    Shao, Feixue
    Ma, Xuetao
    Zhou, Daoxiang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT V, 2024, 14429 : 159 - 171
  • [26] A Review on Face Anti-spoofing
    Jiang F.-L.
    Liu P.-C.
    Zhou X.-D.
    Zhou, Xiang-Dong (zhouxiangdong@cigit.ac.cn), 1799, Science Press (47): : 1799 - 1821
  • [27] From RGB to Depth: Domain Transfer Network for Face Anti-Spoofing
    Wang, Yahang
    Song, Xiaoning
    Xu, Tianyang
    Feng, Zhenhua
    Wu, Xiao-Jun
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 4280 - 4290
  • [28] Token-Wise Asymmetric Contrastive Learning in Countering Unknown Attacks for Face Anti-Spoofing
    Min, Jimin
    Jeon, Yunho
    Jeong, Yonghyun
    Yoo, Youngjoon
    Jang, Haneol
    IEEE ACCESS, 2025, 13 : 46334 - 46345
  • [29] Detection of Spoofing Medium Contours for Face Anti-Spoofing
    Zhu, Xun
    Li, Sheng
    Zhang, Xinpeng
    Li, Haoliang
    Kot, Alex C.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) : 2039 - 2045
  • [30] Multimodal Proxy-Free Face Anti-Spoofing Exploiting Local Patch Features
    Yu, Xiangyu
    Huang, Xinghua
    Ye, Xiaohui
    Liu, Beibei
    Hua, Guang
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1695 - 1699