Carbon nanodots-based interfacial nanofluid for high-performance solar-driven water evaporation

被引:2
|
作者
Canh, Nguyen Van
Hang, Nguyen Thi Nhat [2 ]
Cuong, Nguyen Trong [3 ]
Hoa, Nguyen Hiep [4 ]
Tuyet, Cu Thi Anh [5 ]
Ha, Nguyen Ngoc [1 ]
Phong, Le Thi Hong [6 ]
Le, Phuoc Huu [7 ,8 ]
Luu, Tran Le [9 ]
Dao, Van-Duong [10 ]
Nguyen, Vanthan [11 ]
机构
[1] Ngo Quyen Univ, Fac Automot Engn, Binh Duong 820000, Vietnam
[2] Thu Dau Mot Univ, Inst Appl Technol, Binh Duong 820000, Vietnam
[3] Vietnam Inst Trop Technol & Environm Protect, Ho Chi Minh City 70000, Vietnam
[4] Ngo Quyen Univ, Fac Basic Sci, Binh Duong 820000, Vietnam
[5] Thu Dau Mot Univ, Fac Cultural Ind Sports & Tourism, Binh Duong 820000, Vietnam
[6] Vietnam Acad Sci & Technol, Inst Mat Sci, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
[7] Ming Chi Univ Technol, Ctr Plasma & Thin Film Technol, New Taipei City, Taiwan
[8] Can Tho Univ Med & Pharm, Fac Basic Sci, Dept Phys & Biophys, 179 Nguyen Cu St, Can Tho, Vietnam
[9] Vietnamese German Univ, Master Program Water Technol Reuse & Management, Ben Cat, Vietnam
[10] Phenikaa Univ, Fac Biotechnol Chem & Environm Engn, Hanoi City 100000, Vietnam
[11] Van Lang Univ, Fac Mech Elect & Comp Engn, Sch Technol, Ho Chi Minh City, Vietnam
关键词
Carbon nanodots; Nanofluids; Interfacial water evaporation; Wastewater treatment; STEAM-GENERATION; VAPOR GENERATION; NANOPARTICLES;
D O I
10.1016/j.diamond.2024.111551
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solar steam generation through volumetric heating using nanofluids is a promising approach for wastewater treatment and desalination. However, low evaporation rate and slow response time to the change in solar intensity seriously affect their cumulative evaporation performance in practice. Here, we propose an interfacial nanofluid structure for high-performance solar-driven water evaporation using carbon nanodot (CDs) nanofluid and airlaid paper. CDs nanofluid transferred down through the paper from a source water tank to form an interfacial evaporation structure and ensure continuous water supply for evaporation. The solar conversion heat was only localized on a small amount of nanofluid on the paper resulting in low heat loss to the bulk nanofluid and a fast response time of within 2 min to reach a steady evaporation rate. In addition, the flowing nanofluid on the paper can absorb environmental energy to achieve high-rate evaporation of 1.93 kg m(- 2) h(- 1) under one sun irradiation. This study provides an effective strategy to improve the performance of volumetric heating systems for solar wastewater treatment and desalination.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Research progress in carbon-based photothermal materials based on solar-driven interfacial evaporation design
    Xu, Bing
    Zhou, Jing
    Liu, Jia
    Zhang, Xu
    Yang, Xiaotong
    Yao, Xingjie
    Guo, Peixun
    Ma, Liang
    Zhang, Xinyu
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2024, 52 (10): : 44 - 56
  • [22] Hydrogel-Based Interfacial Solar-Driven Evaporation: Essentials and Trails
    Hu, Xiaoyun
    Yang, Jianfang
    Tu, Yufei
    Su, Zhen
    Guan, Qingqing
    Ma, Zhiwei
    GELS, 2024, 10 (06)
  • [23] An overview of photothermal materials for solar-driven interfacial evaporation
    Fang, Yiming
    Gao, Huimin
    Cheng, Kaiting
    Bai, Liang
    Li, Zhengtong
    Zhao, Yadong
    Xu, Xingtao
    CHINESE CHEMICAL LETTERS, 2025, 36 (03)
  • [24] Recent Progress on Emerging Porous Materials for Solar-Driven Interfacial Water Evaporation
    Ma, Chuang
    Wang, Weike
    Jia, Zhen
    Zhang, Jing
    Wang, Chengbing
    ENERGY TECHNOLOGY, 2023, 11 (08)
  • [25] Electrically Conductive Carbon Aerogels with High Salt-Resistance for Efficient Solar-Driven Interfacial Evaporation
    Li, Lingxiao
    Hu, Tao
    Li, An
    Zhang, Junping
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (28) : 32143 - 32153
  • [26] Experimental investigation of photothermal performance in nanofluid-based direct absorption solar collection for solar-driven water desalination
    Sattar, Abdul
    Bai, Bofeng
    Fazal, Faraz
    Farooq, Muhammad
    Riaz, Fahid
    Hussain, Ijaz
    Khan, Muhammad Imran
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 59
  • [27] Self-Contained Monolithic Carbon Sponges for Solar-Driven Interfacial Water Evaporation Distillation and Electricity Generation
    Zhu, Liangliang
    Gao, Minmin
    Peh, Connor Kang Nuo
    Wang, Xiaoqiao
    Ho, Ghim Wei
    ADVANCED ENERGY MATERIALS, 2018, 8 (16)
  • [28] Facile Synthesis of Vertically Arranged CNTs for Efficient Solar-Driven Interfacial Water Evaporation
    Su, Lifen
    Liu, Xiaoyu
    Li, Xu
    Yang, Bin
    Wu, Bin
    Xia, Ru
    Qian, Jiasheng
    Zhou, Jianhua
    Miao, Lei
    ACS OMEGA, 2022, 7 (50): : 47349 - 47356
  • [29] Review of the progress of solar-driven interfacial water evaporation (SIWE) toward a practical approach
    Srishti, Apurba
    Sinhamahapatra, Apurba
    Kumar, Aditya
    ENERGY ADVANCES, 2023, 2 (05): : 574 - 605
  • [30] Recent advances and challenges for solar-driven water evaporation system toward applications
    Van-Duong Dao
    Ngoc Hung Vu
    Yun, Sining
    NANO ENERGY, 2020, 68