Carbon nanodots-based interfacial nanofluid for high-performance solar-driven water evaporation

被引:6
作者
Canh, Nguyen Van
Hang, Nguyen Thi Nhat [2 ]
Cuong, Nguyen Trong [3 ]
Hoa, Nguyen Hiep [4 ]
Tuyet, Cu Thi Anh [5 ]
Ha, Nguyen Ngoc [1 ]
Phong, Le Thi Hong [6 ]
Le, Phuoc Huu [7 ,8 ]
Luu, Tran Le [9 ]
Dao, Van-Duong [10 ]
Nguyen, Vanthan [11 ]
机构
[1] Ngo Quyen Univ, Fac Automot Engn, Binh Duong 820000, Vietnam
[2] Thu Dau Mot Univ, Inst Appl Technol, Binh Duong 820000, Vietnam
[3] Vietnam Inst Trop Technol & Environm Protect, Ho Chi Minh City 70000, Vietnam
[4] Ngo Quyen Univ, Fac Basic Sci, Binh Duong 820000, Vietnam
[5] Thu Dau Mot Univ, Fac Cultural Ind Sports & Tourism, Binh Duong 820000, Vietnam
[6] Vietnam Acad Sci & Technol, Inst Mat Sci, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
[7] Ming Chi Univ Technol, Ctr Plasma & Thin Film Technol, New Taipei City, Taiwan
[8] Can Tho Univ Med & Pharm, Fac Basic Sci, Dept Phys & Biophys, 179 Nguyen Cu St, Can Tho, Vietnam
[9] Vietnamese German Univ, Master Program Water Technol Reuse & Management, Ben Cat, Vietnam
[10] Phenikaa Univ, Fac Biotechnol Chem & Environm Engn, Hanoi City 100000, Vietnam
[11] Van Lang Univ, Fac Mech Elect & Comp Engn, Sch Technol, Ho Chi Minh City, Vietnam
关键词
Carbon nanodots; Nanofluids; Interfacial water evaporation; Wastewater treatment; STEAM-GENERATION; VAPOR GENERATION; NANOPARTICLES;
D O I
10.1016/j.diamond.2024.111551
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solar steam generation through volumetric heating using nanofluids is a promising approach for wastewater treatment and desalination. However, low evaporation rate and slow response time to the change in solar intensity seriously affect their cumulative evaporation performance in practice. Here, we propose an interfacial nanofluid structure for high-performance solar-driven water evaporation using carbon nanodot (CDs) nanofluid and airlaid paper. CDs nanofluid transferred down through the paper from a source water tank to form an interfacial evaporation structure and ensure continuous water supply for evaporation. The solar conversion heat was only localized on a small amount of nanofluid on the paper resulting in low heat loss to the bulk nanofluid and a fast response time of within 2 min to reach a steady evaporation rate. In addition, the flowing nanofluid on the paper can absorb environmental energy to achieve high-rate evaporation of 1.93 kg m(- 2) h(- 1) under one sun irradiation. This study provides an effective strategy to improve the performance of volumetric heating systems for solar wastewater treatment and desalination.
引用
收藏
页数:7
相关论文
共 54 条
[1]   Volumetric solar heating and steam generation via gold nanofluids [J].
Amjad, Muhammad ;
Raza, Ghulam ;
Xin, Yan ;
Pervaiz, Shahid ;
Xu, Jinliang ;
Du, Xiaoze ;
Wen, Dongsheng .
APPLIED ENERGY, 2017, 206 :393-400
[2]   In vivo theranostics with near-infrared-emitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administration [J].
Bao, Xin ;
Yuan, Ye ;
Chen, Jingqin ;
Zhang, Bohan ;
Li, Di ;
Zhou, Ding ;
Jing, Pengtao ;
Xu, Guiying ;
Wang, Yingli ;
Hola, Katerina ;
Shen, Dezhen ;
Wu, Changfeng ;
Song, Liang ;
Liu, Chengbo ;
Zboril, Radek ;
Qu, Songnan .
LIGHT-SCIENCE & APPLICATIONS, 2018, 7
[3]   Single slope solar distiller performance using metallic nanofluids [J].
Boucanova, Marcelo de P. ;
Vital, Caio V. P. ;
Rativa, Diego ;
Gomez-Malagon, Luis A. .
SOLAR ENERGY, 2022, 245 :1-10
[4]   Fabrication and thermal performance of a solar-driven heat pipe filled with reduced graphene oxide nanofluids [J].
Chang, Chao ;
Pei, Lilin ;
Li, Bo ;
Han, Zhaoyang ;
Ji, Yulong .
SOLAR ENERGY, 2023, 264
[5]   Biradical-Featured Stable Organic-Small-Molecule Photothermal Materials for Highly Efficient Solar-Driven Water Evaporation [J].
Chen, Guanyu ;
Sun, Jiangman ;
Peng, Qian ;
Sun, Qi ;
Wang, Guan ;
Cai, Yuanjing ;
Gu, Xinggui ;
Shuai, Zhigang ;
Tang, Ben Zhong .
ADVANCED MATERIALS, 2020, 32 (29)
[6]   Stability study of low-cost carbon quantum dots nanofluids with saline water and their application investigation for the performance improvement of solar still [J].
Chen, Wenjing ;
Zhou, Jiaying ;
Zhang, Fan ;
Li, Xiaoke ;
Guo, Junyuan .
DIAMOND AND RELATED MATERIALS, 2023, 138
[7]   Ultra-stable carbon quantum dot nanofluids for direct absorption solar collectors [J].
Chen, Xingyu ;
Xiong, Zhekun ;
Chen, Meijie ;
Zhou, Ping .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 240
[8]   Tilted 3D evaporator with high-performance salt rejection for seawater desalination [J].
Cuong, Nguyen Trong ;
Canh, Nguyen Van ;
Hoa, Nguyen Hiep ;
Pham, Thanh Hai ;
Pham, Hong Thach ;
Phong, Le Thi Hong ;
Tuyet, Cu Thi Anh ;
Hang, Nguyen Thi Nhat ;
Dao, Van-Duong ;
Nguyen, Vanthan .
DESALINATION, 2024, 574
[9]   Performance study on single basin single slope solar still with different water nanofluids [J].
Elango, T. ;
Kannan, A. ;
Murugavel, K. Kalidasa .
DESALINATION, 2015, 360 :45-51
[10]   Effect of surface roughness on the solar evaporation of liquid marbles [J].
Feng, Yijun ;
Yao, Guansheng ;
Xu, Jinliang ;
Wang, Lin ;
Liu, Guohua .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 629 :644-653