Joint Statistical Inference for the Area under the ROC Curve and Youden Index under a Density Ratio Model

被引:3
|
作者
Liu, Siyan [1 ]
Tian, Qinglong [2 ]
Liu, Yukun [1 ]
Li, Pengfei [2 ]
机构
[1] East China Normal Univ, Sch Stat, KLATASDS MOE, Shanghai 200062, Peoples R China
[2] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
基金
国家重点研发计划; 加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
AUC; bootstrap method; confidence region; density ratio model; empirical likelihood; Youden index;
D O I
10.3390/math12132118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The receiver operating characteristic (ROC) curve is a valuable statistical tool in medical research. It assesses a biomarker's ability to distinguish between diseased and healthy individuals. The area under the ROC curve (AUC) and the Youden index (J) are common summary indices used to evaluate a biomarker's diagnostic accuracy. Simultaneously examining AUC and J offers a more comprehensive understanding of the ROC curve's characteristics. In this paper, we utilize a semiparametric density ratio model to link the distributions of a biomarker for healthy and diseased individuals. Under this model, we establish the joint asymptotic normality of the maximum empirical likelihood estimator of (AUC,J) and construct an asymptotically valid confidence region for (AUC,J). Furthermore, we propose a new test to determine whether a biomarker simultaneously exceeds prespecified target values of AUC(0) and J(0) with the null hypothesis H-a :AUC <= AUC(0) or J <= J(0) against the alternative hypothesis H-a :AUC > AUC(0) and J>J(0). Simulation studies and a real data example on Duchenne Muscular Dystrophy are used to demonstrate the effectiveness of our proposed method and highlight its advantages over existing methods.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] On Linear Combinations of Dichotomizers for Maximizing the Area Under the ROC Curve
    Marrocco, Claudio
    Molinara, Mario
    Tortorella, Francesco
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (03): : 610 - 620
  • [22] Empirical likelihood-based inferences for the area under the ROC curve with covariates
    BaoYing Yang
    GengSheng Qin
    Science China Mathematics, 2012, 55 : 1553 - 1564
  • [23] Maximizing the area under the ROC curve by pairwise feature combination
    Marrocco, C.
    Duin, R. P. W.
    Tortorella, F.
    PATTERN RECOGNITION, 2008, 41 (06) : 1961 - 1974
  • [24] Empirical likelihood-based inferences for the area under the ROC curve with covariates
    YANG BaoYing 1 & QIN GengSheng 2
    2 Department of Mathematics and Statistics
    Science China(Mathematics), 2012, 55 (08) : 1553 - 1564
  • [25] Non-parametric interval estimation for the partial area under the ROC curve
    Qin, Gengsheng
    Jin, Xiaoping
    Zhou, Xiao-Hua
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (01): : 17 - 33
  • [26] Empirical likelihood-based inferences for the area under the ROC curve with covariates
    Yang BaoYing
    Qin GengSheng
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (08) : 1553 - 1564
  • [27] Combination of Dichotomizers for Maximizing the Partial Area under the ROC Curve
    Ricamato, Maria Teresa
    Tortorella, Francesco
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2010, 6218 : 660 - 669
  • [28] Empirical likelihood ratio test on quantiles under a density ratio model
    Zhang, Archer Gong
    Zhu, Guangyu
    Chen, Jiahua
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 6191 - 6227
  • [29] Rank-based kernel estimation of the area under the ROC curve
    Yin, Jingjing
    Hao, Yi
    Samawi, Hani
    Rochani, Haresh
    STATISTICAL METHODOLOGY, 2016, 32 : 91 - 106
  • [30] Measuring classifier performance: a coherent alternative to the area under the ROC curve
    Hand, David J.
    MACHINE LEARNING, 2009, 77 (01) : 103 - 123