Evolutionary Khovanov homology

被引:3
作者
Shen, Li [1 ]
Liu, Jian [1 ,2 ]
Wei, Guo-Wei [1 ,3 ,4 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Chongqing Univ Technol, Math Sci Res Ctr, Chongqing 400054, Peoples R China
[3] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 09期
基金
美国国家科学基金会;
关键词
knot; link; Khovanov homology; persistent Khovanov topology; geometric topology; multiscale; KNOTS;
D O I
10.3934/math.20241277
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Knot theory, a subfield in geometric topology, is the study of the embedding of closed circles into three-dimensional Euclidean space, motivated by the ubiquity of knots in daily life and human civilization. However, focusing on topology, the current knot theory lacks metric analysis. As a result, the application of knot theory has remained largely primitive and qualitative. Motivated by the need of quantitative knot data analysis (KDA), this work implemented the evolutionary Khovanov homology (EKH) to facilitate a multiscale KDA of real-world data. EKH considers specific metrics to filter links, capturing multiscale topological features of knot configurations beyond traditional invariants. It is demonstrated that EKH can reveal non-trivial knot invariants at appropriate scales, even when the global topological structure of a knot is simple. The proposed EKH holds great potential for KDA and machine learning applications related to knot-type data, in contrast to other data forms, such as point cloud data and data on manifolds.
引用
收藏
页码:26139 / 26165
页数:27
相关论文
共 27 条
  • [1] Adams C. C, 1994, The knot book: An elementary introduction to the mathematical theory of knots, DOI [10.5860/choice.32-2183, DOI 10.5860/CHOICE.32-2183]
  • [2] [Anonymous], 1927, Ann. Math., DOI DOI 10.2307/1968399
  • [3] [Anonymous], 2002, Algebraic & Geometric Topology, DOI [10.2140/agt.2002.2.337, DOI 10.2140/AGT.2002.2.337]
  • [4] Atiyah M., 1990, The geometry and physics of knots. Lezioni Lincee. Lincei Lectures, DOI [10.1017/CBO9780511623868, DOI 10.1017/CBO9780511623868]
  • [5] Bi WY, 2022, Arxiv, DOI arXiv:2205.10796
  • [6] Burde G, 2002, Knots, DOI [10.1515/9783110198034, DOI 10.1515/9783110198034]
  • [7] TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions
    Cang, Zixuan
    Wei, Guowei
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (07)
  • [8] TOPOLOGY AND DATA
    Carlsson, Gunnar
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) : 255 - 308
  • [9] EVOLUTIONARY DE RHAM-HODGE METHOD
    Chen, Jiahui
    Zhao, Rundong
    Tong, Yiying
    Wei, Guo-Wei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (07): : 3785 - 3821
  • [10] Topological knots and links in proteins
    Dabrowski-Tumanski, Pawel
    Sulkowska, Joanna I.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (13) : 3415 - 3420