Improved Subsynchronous Oscillation Parameter Identification Based on Eigensystem Realization Algorithm

被引:0
作者
Chen, Gang [1 ,2 ]
Zeng, Xueyang [1 ,2 ]
Liu, Yilin [3 ]
Zhang, Fang [3 ]
Shi, Huabo [1 ,2 ]
机构
[1] State Grid Sichuan Elect Power Res Inst, Chengdu 610041, Peoples R China
[2] Power Internet Things Key Lab Sichuan Prov, Chengdu 610041, Peoples R China
[3] Beijing Jiaotong Univ, Sch Elect Engn, Beijing 100044, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 17期
关键词
subsynchronous oscillations; parameter identification; fitting equation; eigensystem realization algorithm; WIND FARMS; RESONANCE;
D O I
10.3390/app14177841
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Subsynchronous oscillation (SSO) is the resonance between a new energy generator set and a weak power grid, and the resonance frequency is usually the sub-/super-synchronous frequency. The eigensystem realization algorithm (ERA) is a classic algorithm for extracting modal parameters based on matrix decomposition. By leveraging the ERA's simplicity and low computational cost, an enhanced methodology for identifying the key parameters of SSO is introduced. The enhanced algorithm realizes SSO angular frequency extraction by constructing an angular frequency fitting equation, enabling efficient identification of SSO parameters using only a 200 ms synchrophasor sequence. In the process of identification, the fitting-based ERA effectively addresses the limitation of the existing ERA. The accuracy of SSO parameter identification is improved, thereby realizing that SSO parameter identification can be carried out using a 200 ms data window. The fitting-based ERA is verified using synthetic and actual data from synchrophasor measurement terminals. The research results show that the proposed algorithm can accurately extract fundamental and subsynchronous or supersynchronous oscillation parameters, effectively realizing dynamic real-time monitoring of subsynchronous oscillations.
引用
收藏
页数:13
相关论文
共 23 条
  • [1] Abhinav K., 2023, P 2023 IEEE 3 INT C, P1
  • [2] A tutorial on data-driven eigenvalue identification: Prony analysis, matrix pencil, and eigensystem realization algorithm
    Almunif, Anas
    Fan, Lingling
    Miao, Zhixin
    [J]. INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2020, 30 (04):
  • [3] [Anonymous], 2011, IEEE STANDARD 1036 2, DOI [DOI 10.1109/IEEESTD.2011.6111219, DOI 10.1109/IEEESTD.2011.5703189]
  • [4] Huang B., 2023, P 2023 IEEE SUST POW, P1
  • [5] Jiang HL, 2020, 2020 5TH ASIA CONFERENCE ON POWER AND ELECTRICAL ENGINEERING (ACPEE 2020), P1160, DOI 10.1109/ACPEE48638.2020.9136374
  • [6] Subsynchronous Resonance Monitoring Using Ambient High Speed Sensor Data
    Khalilinia, Hamed
    Venkatasubramanian, Vaithianathan
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (02) : 1073 - 1083
  • [7] Distributed Prony analysis for real-world PMU data
    Khazaei, Javad
    Fan, Lingling
    Jiang, Weiqing
    Manjure, Durgesh
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2016, 133 : 113 - 120
  • [8] An Improved Fast Detection Method on Subsynchronous Resonance in a Wind Power System With a Series Compensated Transmission Line
    Li, Hui
    Abdeen, Mohamed
    Chai, Zhaosen
    Kamel, Salah
    Xie, Xiangjie
    Hu, Yu
    Wang, Kun
    [J]. IEEE ACCESS, 2019, 7 : 61512 - 61522
  • [9] Application of Multisynchrosqueezing Transform for Subsynchronous Oscillation Detection Using PMU Data
    Ma, Yue
    Huang, Qi
    Zhang, Zhenyuan
    Cai, Dongsheng
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (03) : 2006 - 2013
  • [10] Sub Synchronous Oscillation in Asynchronous Generators Serving to Wind and Hydro Power Systems - A Review
    Mohale, Vijay
    Chelliah, Thanga Raj
    [J]. 2021 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING (IAS), 2021,