Network pharmacology integrated with molecular docking and molecular dynamics simulations to explore the mechanism of Tongxie Yaofang in the treatment of ulcerative colitis

被引:0
|
作者
Tang, Lili [1 ]
Liu, Yuedong [2 ]
Tao, Hongwu [1 ]
Feng, Wenzhe [3 ]
Ren, Cong [1 ]
机构
[1] Liaoning Univ Tradit Chinese Med, Shenyang, Peoples R China
[2] Liaoning Univ Tradit Chinese Med, Affiliated Hosp 3, Shenyang 110000, Peoples R China
[3] Shaanxi Univ Chinese Med, Affiliated Hosp, Shenyang, Peoples R China
基金
中国国家自然科学基金;
关键词
meta-analysis; molecular mechanism; network pharmacology; Tongxie Yaofang; ulcerative colitis; EARLY GROWTH RESPONSE-1; TRANSCRIPTION FACTOR; DECOCTION;
D O I
10.1097/MD.0000000000039569
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Tongxie Yaofang (TXYF), a classical traditional Chinese medicine, is commonly used in China to treat ulcerative colitis (UC). The aim of this study was to integrate network pharmacology with molecular docking and molecular dynamics simulations to explore the mechanism of Tongxie Yaofang in the treatment of UC. The traditional Chinese medicine systems pharmacology database was used to retrieve the relevant chemical compositions of the herbs contained in TXYF. The DisGeNET, GeneCards, Online Mendelian Inheritance in Man, and Therapeutic Target Database databases were used to retrieve UC-related targets. To construct protein-protein interaction networks and screen for key targets, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of the key targets of TXYF in the treatment of UC were performed using R 4.3.2 software. AutoDock Tools 1.5.7 was used for molecular docking. Molecular dynamics simulations of protein complexes and complexes of proteins with small-molecule ligands and eutectic ligands were carried out with Gromacs 2022 software. Network pharmacology analysis revealed that TXYF could act on UC through multiple targets and pathways. It may exert therapeutic effects mainly through the AGE/RAGE, TOLL, JAK/STAT, and Th17 signaling pathways. The possible targets of TXYF in the treatment of UC could be AKT1, BCL2, EGFR, HMOX1, HSP90AA1, and TGF beta 1. Molecular docking analysis revealed that AKT1 had the highest binding energy (-10.55 kcal/mol). Molecular dynamics simulations revealed that the complexes formed by the AKT1 protein and the chemical compounds MOL001910 and MOL00035 had good stability and high binding strength. AKT1 may be the most critical target of TXYF in treating UC, and the key chemical components of TXYF in treating UC may include beta-sitosterol (MOL000358) and 11alpha,12alpha-epoxy-3beta-23-dihydroxy-30-norolean-20-en-28,12beta-olide (MOL00 1910). This study revealed that TXYF may exert therapeutic effects on UC through multiple targets, multiple biological functions, and multiple signaling pathways. This study provides a new insight into the pharmacological mechanism of TXYF in treating UC.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Using Network Pharmacology and Molecular Docking Technology to Explore the Mechanism of Modified Pulsatilla Decoction in the Treatment of Ulcerative Colitis
    Wu, Tingting
    Yang, Xin
    Xu, Bo
    Zhu, Huiping
    Guo, Jinwei
    Zhou, Yu
    Liang, Guoqiang
    Sun, Hongwen
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (05)
  • [2] Network pharmacology integrated with molecular docking and molecular dynamics simulations to explore the mechanism of Shaoyao Gancao Tang in the treatment of asthma and irritable bowel syndrome
    Ren, Mengjiao
    Ma, Jian
    Qu, Minye
    MEDICINE, 2024, 103 (50)
  • [3] Network pharmacology and molecular docking reveal potential mechanism of esculetin in the treatment of ulcerative colitis
    Cai, Ting
    Cai, Bin
    MEDICINE, 2023, 102 (45) : E35852
  • [4] Network Pharmacology and Molecular Docking Analysis on Molecular Mechanism of Qingzi Zhitong Decoction in the Treatment of Ulcerative Colitis
    Shou, Xintian
    Wang, Yumeng
    Zhang, Xuesong
    Zhang, Yanju
    Yang, Yan
    Duan, Chenglin
    Yang, Yihan
    Jia, Qiulei
    Yuan, Guozhen
    Shi, Jingjing
    Shi, Shuqing
    Cui, Hanming
    Hu, Yuanhui
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [5] Integrated Network Pharmacology, Molecular Docking and Animal Experiment to Explore the Efficacy and Potential Mechanism of Baiyu Decoction Against Ulcerative Colitis by Enema
    Cui, Yuan
    Hu, Jingyi
    Li, Yanan
    Au, Ryan
    Fang, Yulai
    Cheng, Cheng
    Xu, Feng
    Li, Weiyang
    Wu, Yuguang
    Zhu, Lei
    Shen, Hong
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2023, 17 : 3453 - 3472
  • [6] Mechanism of Jiawei Zhengqi Powder in the Treatment of Ulcerative Colitis Based on Network Pharmacology and Molecular Docking
    Zhao, Chao
    Zhi, ChenYang
    Zhou, JianHua
    BIOMED RESEARCH INTERNATIONAL, 2023, 2023
  • [7] Network Pharmacology Integrated Molecular Docking Revealed the Mechanism of Jianpi Yiqi Taohua Decoction Against Ulcerative Colitis
    Jia, Lin
    Zhou, Haiyan
    Li, Wenhao
    Lv, Zhantai
    MEDICAL SCIENCE MONITOR, 2022, 28
  • [8] Exploring the molecular mechanism of Epimedium for the treatment of ankylosing spondylitis based on network pharmacology, molecular docking, and molecular dynamics simulations
    Wang, Xiangjin
    Wu, Lijiao
    Yu, Maobin
    Wang, Hao
    He, Langyu
    Hu, Yilang
    Li, Zhaosen
    Zheng, Yuqin
    Peng, Bo
    MOLECULAR DIVERSITY, 2025, 29 (01) : 591 - 606
  • [9] Network Pharmacology, Molecular Docking, Molecular Dynamics to Explore the Mechanism of Danggui Shaoyao Powder for Hepatic Encephalopathy
    Zhang, Miao
    Liu, Rongxin
    Zhao, Yusen
    Chen, Zixin
    Zhai, Honglin
    Si, Hongzong
    CURRENT PHARMACEUTICAL DESIGN, 2025,
  • [10] Uncovering the Mechanism of Curcuma in the Treatment of Ulcerative Colitis Based on Network Pharmacology, Molecular Docking Technology, and Experiment Verification
    Liu, Suxian
    Li, Qiaodong
    Liu, Fengzhi
    Cao, Hui
    Liu, Jun
    Shan, Jingyi
    Dan, Wenchao
    Yuan, Jianye
    Lin, Jiang
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2021, 2021