Machine Learning-Based Predictive Model for Mortality in Female Breast Cancer Patients Considering Lifestyle Factors

被引:1
作者
Zhen, Meixin [1 ]
Chen, Haibing [1 ]
Lu, Qing [1 ]
Li, Hui [2 ]
Yan, Huang [2 ]
Wang, Ling [2 ]
机构
[1] Cent South Univ, Xiangya Coll Nursing, Changsha 410013, Hunan, Peoples R China
[2] Cent South Univ, Xiangya Hosp 3, Nursing Dept, Changsha 410013, Hunan, Peoples R China
关键词
breast cancer; machine learning; predict model; mortality; lifestyle; SHAP; PROGNOSIS;
D O I
10.2147/CMAR.S460811
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: To construct a free and accurate breast cancer mortality prediction tool by incorporating lifestyle factors, aiming to assist healthcare professionals in making informed decisions. Patients and Methods: In this retrospective study, we utilized a ten-year follow-up dataset of female breast cancer patients from a major Chinese hospital and included 1,390 female breast cancer patients with a 7% (96) mortality rate. We employed six machine learning algorithms (ridge regression, k-nearest neighbors, neural network, random forest, support vector machine, and extreme gradient boosting) to construct a mortality prediction model for breast cancer. Results: This model incorporated significant lifestyle factors, such as postsurgery sexual activity, use of totally implantable venous access ports, and prosthetic breast wear, which were identified as independent protective factors. Meanwhile, ten-fold cross-validation demonstrated the superiority of the random forest model (average AUC = 0.918; 1-year AUC = 0.914, 2-year AUC = 0.867, 3-year AUC = 0.883). External validation further supported the model's robustness (average AUC = 0.782; 1-year AUC = 0.809, 2-year AUC = 0.785, 3-year AUC = 0.893). Additionally, a free and user-friendly web tool was developed using the Shiny framework to facilitate easy access to the model. Conclusion: Our breast cancer mortality prediction model is free and accurate, providing healthcare professionals with valuable information to support their clinical decisions and potentially promoting healthier lifestyles for breast cancer patients.
引用
收藏
页码:1253 / 1265
页数:13
相关论文
共 44 条
[1]   Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020 [J].
Cao, Wei ;
Chen, Hong-Da ;
Yu, Yi-Wen ;
Li, Ni ;
Chen, Wan-Qing .
CHINESE MEDICAL JOURNAL, 2021, 134 (07) :783-791
[2]   Machine Learning Algorithms as a Computer-Assisted Decision Tool for Oral Cancer Prognosis and Management Decisions: A Systematic Review [J].
Chiesa-Estomba, Carlos M. ;
Grana, Manuel ;
Medela, Alfonso ;
Sistiaga-Suarez, Jon A. ;
Lechien, Jerome R. ;
Calvo-Henriquez, Christian ;
Mayo-Yanez, Miguel ;
Vaira, Luigi Angelo ;
Grammatica, Alberto ;
Cammaroto, Giovanni ;
Ayad, Tareck ;
Fagan, Johannes J. .
ORL-JOURNAL FOR OTO-RHINO-LARYNGOLOGY HEAD AND NECK SURGERY, 2022, 84 (04) :278-288
[3]   The Effects of Adipocytes on the Regulation of Breast Cancer in the Tumor Microenvironment: An Update [J].
Chu, Dinh-Toi ;
Thuy Nguyen Thi Phuong ;
Nguyen Le Bao Tien ;
Tran, Dang-Khoa ;
Tran-Thuy Nguyen ;
Vo Van Thanh ;
Thuy Luu Quang ;
Le Bui Minh ;
Van Huy Pham ;
Vo Truong Nhu Ngoc ;
Kushekhar, Kushi ;
Thien Chu-Dinh .
CELLS, 2019, 8 (08)
[4]   Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial [J].
Davies, Christina ;
Pan, Hongchao ;
Godwin, Jon ;
Gray, Richard ;
Arriagada, Rodrigo ;
Raina, Vinod ;
Abraham, Mirta ;
Medeiros Alencar, Victor Hugo ;
Badran, Atef ;
Bonfill, Xavier ;
Bradbury, Joan ;
Clarke, Michael ;
Collins, Rory ;
Davis, Susan R. ;
Delmestri, Antonella ;
Forbes, John F. ;
Haddad, Peiman ;
Hou, Ming-Feng ;
Inbar, Moshe ;
Khaled, Hussein ;
Kielanowska, Joanna ;
Kwan, Wing-Hong ;
Mathew, Beela S. ;
Mittra, Indraneel ;
Mueller, Bettina ;
Nicolucci, Antonio ;
Peralta, Octavio ;
Pernas, Fany ;
Petruzelka, Lubos ;
Pienkowski, Tadeusz ;
Radhika, Ramachandran ;
Rajan, Balakrishnan ;
Rubach, Maryna T. ;
Tort, Sera ;
Urrutia, Gerard ;
Valentini, Miriam ;
Wang, Yaochen ;
Peto, Richard .
LANCET, 2013, 381 (9869) :805-816
[5]   Body image and sexual problems in young women with breast cancer [J].
Fobair, Pat ;
Stewart, Susan L. ;
Chang, Subo ;
D'Onofrio, Carol ;
Banks, Priscilla J. ;
Bloom, Joan R. .
PSYCHO-ONCOLOGY, 2006, 15 (07) :579-594
[6]   Life after breast cancer: Understanding women's health-related quality of life and sexual functioning [J].
Ganz, PA ;
Rowland, JH ;
Desmond, K ;
Meyerowitz, BE ;
Wyatt, GE .
JOURNAL OF CLINICAL ONCOLOGY, 1998, 16 (02) :501-514
[7]   Eighth Edition of the AJCC Cancer Staging Manual: Breast Cancer [J].
Giuliano, Armando E. ;
Edge, Stephen B. ;
Hortobagyi, Gabriel N. .
ANNALS OF SURGICAL ONCOLOGY, 2018, 25 (07) :1783-1785
[8]   Assessment of Postural Balance in Women Treated for Breast Cancer [J].
Glowacka-Mrotek, Iwona ;
Tarkowska, Magdalena ;
Nowikiewicz, Tomasz ;
Hagner-Derengowska, Magdalena ;
Goch, Aleksander .
MEDICINA-LITHUANIA, 2020, 56 (10) :1-10
[9]   Lifestyle modifications for patients with breast cancer to improve prognosis and optimize overall health [J].
Hamer, Julia ;
Warner, Ellen .
CANADIAN MEDICAL ASSOCIATION JOURNAL, 2017, 189 (07) :E268-E274
[10]   Survival model predictive accuracy and ROC curves [J].
Heagerty, PJ ;
Zheng, YY .
BIOMETRICS, 2005, 61 (01) :92-105