Verifying Autoencoders for Anomaly Detection in Predictive Maintenance

被引:0
作者
Guidotti, Dario [1 ]
Pandolfo, Laura [1 ]
Pulina, Luca [1 ]
机构
[1] Univ Sassari, DUMAS, Via Roma 151, I-07100 Sassari, Italy
来源
ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, IEA-AIE 2024 | 2024年 / 14748卷
基金
欧盟地平线“2020”;
关键词
Trustworthy AI; Neural Networks; Formal Verification; Anomaly Detection; Predictive Maintenance;
D O I
10.1007/978-981-97-4677-4_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the application of artificial intelligence and machine learning techniques has gained significant traction in addressing various challenges across industries. Among these, anomaly detection has emerged as a crucial task for ensuring the integrity, security, and reliability of complex systems. Autoencoders, a class of neural networks, have shown promising results in capturing intricate patterns and deviations from the norm, making them a popular choice for anomaly detection tasks. However, the robustness and reliability of these autoencoder-based anomaly detection systems in real-life scenarios remain a critical concern. This paper presents an investigation into the verification of autoencoders for anomaly detection applied in a predictive maintenance case study.
引用
收藏
页码:188 / 199
页数:12
相关论文
共 44 条
  • [1] [Anonymous], 2018, One year industrial component degradation dataset
  • [2] Improved Geometric Path Enumeration for Verifying ReLU Neural Networks
    Bak, Stanley
    Hoang-Dung Tran
    Hobbs, Kerianne
    Johnson, Taylor T.
    [J]. COMPUTER AIDED VERIFICATION (CAV 2020), PT I, 2020, 12224 : 66 - 96
  • [3] Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
    Barredo Arrieta, Alejandro
    Diaz-Rodriguez, Natalia
    Del Ser, Javier
    Bennetot, Adrien
    Tabik, Siham
    Barbado, Alberto
    Garcia, Salvador
    Gil-Lopez, Sergio
    Molina, Daniel
    Benjamins, Richard
    Chatila, Raja
    Herrera, Francisco
    [J]. INFORMATION FUSION, 2020, 58 : 82 - 115
  • [4] Bunel R, 2020, J MACH LEARN RES, V21
  • [5] Digital Twins and AI in Smart Motion Control Applications
    Cech, Martin
    Beltman, Arend-Jan
    Ozols, Kaspars
    [J]. 2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
  • [6] De Palma A, 2021, Arxiv, DOI arXiv:2104.06718
  • [7] Demarchi S., 2022, P 36 ECMS INT C MOD, P310, DOI [10.7148/2022-0310, DOI 10.7148/2022-0310]
  • [8] Demarchi S., 2022, CEUR Workshop Proceedings, V3252
  • [9] Eramo R., 2022, CEUR Workshop Proceedings, V3345
  • [10] Ferrari C., 2022, 10 INT C LEARN REPR