Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways

被引:2
|
作者
Ren, Houming [1 ]
Ou, Qingshan [1 ]
Pu, Qian [1 ]
Lou, Yuqi [1 ]
Yang, Xiaolin [1 ]
Han, Yujiao [1 ]
Liu, Shiping [1 ]
机构
[1] Southwest Univ, State Key Lab Resource Insects, Chongqing 400716, Peoples R China
基金
中国国家自然科学基金;
关键词
bimolecular fluorescence complementation (BiFC); protein-protein interactions (PPIs); cell signaling pathway; NF-KAPPA-B; LIVING CELLS; BETA-CATENIN; IN-VIVO; FUNCTIONAL-CHARACTERIZATION; ENDOPLASMIC-RETICULUM; BIFC ANALYSIS; KINASE; ARABIDOPSIS; SYSTEM;
D O I
10.3390/biom14070859
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/beta-catenin, NF-kappa B, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Localizing protein-protein interactions by bimolecular fluorescence complementation in planta
    Citovsky, Vitaly
    Gafni, Yedidya
    Tzfira, Tzvi
    METHODS, 2008, 45 (03) : 196 - 206
  • [2] The analysis of protein-protein interactions in plants by bimolecular fluorescence complementation
    Ohad, Nir
    Shichrur, Keren
    Yalovsky, Shaul
    PLANT PHYSIOLOGY, 2007, 145 (04) : 1090 - 1099
  • [3] In planta analysis of protein-protein interactions related to light signaling by bimolecular fluorescence complementation
    Stolpe, T
    Süsslin, C
    Marrocco, K
    Nick, P
    Kretsch, T
    Kircher, S
    PROTOPLASMA, 2005, 226 (3-4) : 137 - 146
  • [4] Visualization of protein-protein interactions in plant cells by bimolecular fluorescence complementation
    Kudla, J.
    Oecking, C.
    Schumacher, K.
    Harter, K.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2005, 141 (03): : S257 - S258
  • [5] Detection of protein-protein interactions in plants using bimolecular fluorescence complementation
    Bracha-Drori, K
    Shichrur, K
    Katz, A
    Oliva, M
    Angelovici, R
    Yalovsky, S
    Ohad, N
    PLANT JOURNAL, 2004, 40 (03): : 419 - 427
  • [6] Bimolecular fluorescence complementation assay: Application in the study of protein-protein interaction
    Yan Jing
    Huo Ke-Ke
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2006, 33 (06) : 589 - 595
  • [7] A Bimolecular Fluorescence Complementation Tool for Identification of Protein-Protein Interactions in Candida albicans
    Subotic, Ana
    Swinnen, Erwin
    Demuyser, Liesbeth
    De Keersmaecker, Herlinde
    Mizuno, Hideaki
    Tournu, Helene
    Van Dijck, Patrick
    G3-GENES GENOMES GENETICS, 2017, 7 (10): : 3509 - 3520
  • [8] Protein-protein Interactions Visualized by Bimolecular Fluorescence Complementation in Tobacco Protoplasts and Leaves
    Schweiger, Regina
    Schwenkert, Serena
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (85):
  • [9] Imaging protein-protein interactions in plant cells by bimolecular fluorescence complementation assay
    Weinthal, Dan
    Tzfira, Tzvi
    TRENDS IN PLANT SCIENCE, 2009, 14 (02) : 59 - 63
  • [10] Development of Bimolecular Fluorescence Complementation Using Dronpa for Visualization of Protein-Protein Interactions in Cells
    Lee, You Ri
    Park, Jong-Hwa
    Hahm, Soo-Hyun
    Kang, Lin-Woo
    Chung, Ji Hyung
    Nam, Ki-Hyun
    Hwang, Kwang Yeon
    Kwon, Ick Chan
    Han, Ye Sun
    MOLECULAR IMAGING AND BIOLOGY, 2010, 12 (05) : 468 - 478