The singularly perturbed problem is characterized by the presence of narrow boundary layers, which poses challenges for traditional numerical methods due to complexity and high costs. The contemporary deep learning physics-informed neural networks (PINNs) suffer from accuracy issues while learning initial conditions, fail to capture the sharp gradient behaviors, and provide inadequate approximations to rapidly oscillating solutions. A novel technique named PATPINN is introduced to effectively address singularly perturbed parabolic problems with significant gradients in the spatio-temporal domain, utilizing a unique time and parameter multi-step asymptotic pre-training approach based on PINNs. The presented technique can assist the model in learning the system dynamic behavior and improve the accuracy of the initial conditions. also enables PINNs to capture abrupt changes in the solution without prior knowledge of the boundary layer position, boosting its ability to approximate oscillatory solutions. This innovative approach does not require hyperparameter fine-tuning and provides a dependable deep learning approach for handling evolutionary singular perturbation problems. The proposed method compared to PINNs and pre-training PINN (PTPINN) by solving singular convection-diffusion- reaction equations and magnetohydrodynamic equations. The results show that the proposed strategy outperforms PINNs and PTPINN in capturing the boundary layer gradient, improving the approximation accuracy and accelerating the training process, in addition to significantly improving the accuracy of PINNs in approximating the initial conditions.
机构:
Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USAUniv Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
Arzani, Amirhossein
Cassel, Kevin W.
论文数: 0引用数: 0
h-index: 0
机构:
Illinois Inst Technol, Dept Mech Mat & Aerosp Engn, Chicago, IL USAUniv Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
Cassel, Kevin W.
D'Souza, Roshan M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin Milwaukee, Dept Mech Engn, Milwaukee, WI USAUniv Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
机构:
Beijing Inst Big Data Res, Beijing, Peoples R China
Princeton Univ, Princeton, NJ 08544 USA
Peking Univ, Beijing, Peoples R ChinaBeijing Inst Big Data Res, Beijing, Peoples R China
E, Weinan
Han, Jiequn
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Princeton, NJ 08544 USABeijing Inst Big Data Res, Beijing, Peoples R China
Han, Jiequn
Jentzen, Arnulf
论文数: 0引用数: 0
h-index: 0
机构:
Swiss Fed Inst Technol, Zurich, SwitzerlandBeijing Inst Big Data Res, Beijing, Peoples R China
机构:
China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R ChinaChina Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
Guo, Jiawei
Yao, Yanzhong
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R ChinaChina Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
Yao, Yanzhong
Wang, Han
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
Peking Univ, Coll Engn, HEDPS, CAPT, Beijing, Peoples R ChinaChina Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
Wang, Han
Gu, Tongxiang
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R ChinaChina Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
机构:
Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USAUniv Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
Arzani, Amirhossein
Cassel, Kevin W.
论文数: 0引用数: 0
h-index: 0
机构:
Illinois Inst Technol, Dept Mech Mat & Aerosp Engn, Chicago, IL USAUniv Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
Cassel, Kevin W.
D'Souza, Roshan M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin Milwaukee, Dept Mech Engn, Milwaukee, WI USAUniv Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
机构:
Beijing Inst Big Data Res, Beijing, Peoples R China
Princeton Univ, Princeton, NJ 08544 USA
Peking Univ, Beijing, Peoples R ChinaBeijing Inst Big Data Res, Beijing, Peoples R China
E, Weinan
Han, Jiequn
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Princeton, NJ 08544 USABeijing Inst Big Data Res, Beijing, Peoples R China
Han, Jiequn
Jentzen, Arnulf
论文数: 0引用数: 0
h-index: 0
机构:
Swiss Fed Inst Technol, Zurich, SwitzerlandBeijing Inst Big Data Res, Beijing, Peoples R China
机构:
China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R ChinaChina Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
Guo, Jiawei
Yao, Yanzhong
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R ChinaChina Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
Yao, Yanzhong
Wang, Han
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
Peking Univ, Coll Engn, HEDPS, CAPT, Beijing, Peoples R ChinaChina Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
Wang, Han
Gu, Tongxiang
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R ChinaChina Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China