Quantifying genuine tripartite entanglement by reshaping the state

被引:7
作者
Dong, Dong-Dong [1 ]
Li, Li-Juan [1 ]
Song, Xue-Ke [1 ]
Ye, Liu [1 ]
Wang, Dong [1 ]
机构
[1] Anhui Univ, Sch Phys & Optoelect Engn, Hefei 230601, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
Quantum entanglement - Quantum optics;
D O I
10.1103/PhysRevA.110.032420
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Although genuine multipartite entanglement (GME), as one quantum resource, is indispensable in quantum information processing, most of the existing measures cannot detect GME faithfully. In this paper we present a GME measure, namely, the minimum pairwise concurrence (MPC), by introducing pairwise entanglement, which characterizes the entanglement between two single-qubit subsystems of a multipartite system without tracing out the remaining qubit. The pairwise entanglement can be obtained by combining the entanglement of the reduced subsystem and the three-tangle. Compared with existing measures, the MPC measure outperforms the previous ones in many aspects. Due to its fine properties, it thus is believed that the MPC could be a good candidate for achieving potential quantum tasks and also could facilitate the understanding of GME.
引用
收藏
页数:6
相关论文
共 32 条
[1]   Generalized Schmidt decomposition and classification of three-quantum-bit states [J].
Acín, A ;
Andrianov, A ;
Costa, L ;
Jané, E ;
Latorre, JI ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1560-1563
[2]   Monotones and invariants for multi-particle quantum states [J].
Barnum, H ;
Linden, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6787-6805
[3]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]   Characterizing entanglement [J].
Bruss, D .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4237-4251
[6]   Decoherence and multipartite entanglement [J].
Carvalho, ARR ;
Mintert, F ;
Buchleitner, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (23)
[7]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[8]   Complementary relations of entanglement, coherence, steering, and Bell nonlocality inequality violation in three-qubit states [J].
Dong, Dong-Dong ;
Song, Xue-Ke ;
Fan, Xiao-Gang ;
Ye, Liu ;
Wang, Dong .
PHYSICAL REVIEW A, 2023, 107 (05)
[9]   Unification of coherence and quantum correlations in tripartite systems [J].
Dong, Dong -Dong ;
Wei, Geng-Biao ;
Song, Xue-Ke ;
Wang, Dong ;
Ye, Liu .
PHYSICAL REVIEW A, 2022, 106 (04)
[10]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311