Image-based wavefront correction using model-free reinforcement learning

被引:1
作者
Gutierrez, Yann [1 ,2 ,3 ]
Mazoyer, Johan [1 ]
Mugnier, Laurent M.
Herscovici-Schiller, Olivier [2 ]
Abeloos, Baptiste [2 ]
机构
[1] Univ Paris Cite, Univ PSL, Sorbonne Univ, LESIA,Observ Paris,CNRS, 5 Pl Jules Janssen, F-92195 Meudon, France
[2] Univ Paris Saclay, DTIS, ONERA, F-91123 Palaiseau, France
[3] Univ Paris Saclay, DOTA, ONERA, BP 72, F-92322 Chatillon, France
来源
OPTICS EXPRESS | 2024年 / 32卷 / 18期
关键词
ADAPTIVE OPTICS; PHASE RETRIEVAL; NEURAL-NETWORK; DIVERSITY; ABERRATION; SENSOR;
D O I
10.1364/OE.529415
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical aberrations prevent telescopes from reaching their theoretical diffraction limit. Once estimated, these aberrations can be compensated for using deformable mirrors in a closed loop. Focal plane wavefront sensing enables the estimation of the aberrations on the complete optical path, directly from the images taken by the scientific sensor. However, current focal plane wavefront sensing methods rely on physical models whose inaccuracies may limit the overall performance of the correction. The aim of this study is to develop a data-driven method using model-free reinforcement learning to automatically perform the estimation and correction of the aberrations, using only phase diversity images acquired around the focal plane as inputs. We formulate the correction problem within the framework of reinforcement learning and train an agent on simulated data. We show that the method is able to reliably learn an efficient control strategy for various realistic conditions. Our method also demonstrates robustness to a wide range of noise levels.
引用
收藏
页码:31247 / 31269
页数:23
相关论文
共 57 条
[1]   Image-based wavefront sensing for astronomy using neural networks [J].
Andersen, Torben ;
Owner-Petersen, Mette ;
Enmark, Anita .
JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2020, 6 (03)
[2]   Neural networks for image-based wavefront sensing for astronomy [J].
Andersen, Torben ;
Owner-Petersen, Mette ;
Enmark, Anita .
OPTICS LETTERS, 2019, 44 (18) :4618-4621
[3]   ADAPTIVE OPTICS FOR ARRAY TELESCOPES USING NEURAL-NETWORK TECHNIQUES [J].
ANGEL, JRP ;
WIZINOWICH, P ;
LLOYDHART, M ;
SANDLER, D .
NATURE, 1990, 348 (6298) :221-224
[4]   Unambiguous phase retrieval as a cophasing sensor for phased array telescopes [J].
Baron, Fabien ;
Mocoeur, Isabelle ;
Cassaing, Frederic ;
Mugnier, Laurent M. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2008, 25 (05) :1000-1015
[5]   ARTIFICIAL NEURAL NETWORK FOR THE DETERMINATION OF HUBBLE SPACE TELESCOPE ABERRATION FROM STELLAR IMAGES [J].
BARRETT, TK ;
SANDLER, DG .
APPLIED OPTICS, 1993, 32 (10) :1720-1727
[6]  
Brockman G, 2016, Arxiv, DOI [arXiv:1606.01540, DOI 10.48550/ARXIV.1606.01540]
[7]   Focal plane wavefront sensing using machine learning: performance of convolutional neural networks compared to fundamental limits [J].
de Xivry, G. Orban ;
Quesnel, M. ;
Vanberg, P-O ;
Absil, O. ;
Louppe, G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 505 (04) :5702-5713
[8]  
Dohlen K., 2011, 2 INT C AD OPT EXTR, P75
[9]   Wavefront sensor-less adaptive optics using deep reinforcement learning [J].
Durech, Eduard ;
Newberry, William ;
Franke, Jonas ;
Sarunic, Marinko, V .
BIOMEDICAL OPTICS EXPRESS, 2021, 12 (09) :5423-5438
[10]   PHASE RETRIEVAL ALGORITHMS - A COMPARISON [J].
FIENUP, JR .
APPLIED OPTICS, 1982, 21 (15) :2758-2769