A highly stable TiO2/covalent 2 /covalent organic framework heterojunction photocatalyst boosting charge transfer for visible-light-driven CO2 2 reduction

被引:1
|
作者
Liu, Dongdong [1 ]
Zhu, Chao [1 ]
Ma, Li-Li [1 ]
Yuan, Guozan [1 ]
机构
[1] Anhui Univ Technol, Sch Chem & Chem Engn, Maanshan 243032, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanoparticles; Composite materials; Organic; Semiconductors; Interfaces;
D O I
10.1016/j.matlet.2024.136395
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we present a novel heterojunction photocatalyst (TiO2-TTCOF) 2-TTCOF) boosting charge transfer for visible- light-driven CO2 2 to CO conversion without photosensitizer or sacrificial agents. The 10% TiO2-TTCOF 2-TTCOF heterojunction photocatalyst is able to catalyze CO2 2 conversion, resulting in a highest CO production rate of 139.1 mu mol g- 1 with a selectivity of 96% and O2 2 production rate of 73.1 mu mol g- 1 . Additionally, time-resolved fluorescence decay spectra confirmed the heterostructure between TTCOF and TiO2 2 can promote photoelectron transfer. The ATR-IFTS spectra indicated the photocatalytic reaction pathway.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Heterojunction construction on covalent organic frameworks for visible-light-driven H2O2 evolution in ambient air
    Xia, Guanglu
    Qiu, Jianhao
    Zhang, Lu
    Dai, Dingliang
    Yao, Jianfeng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 664
  • [22] Photoelectron Transfer Mediated by the Interfacial Electron Effects for Boosting Visible-Light-Driven CO2 Reduction
    Zou, Lei
    Sa, Rongjian
    Zhong, Hong
    Lv, Haowei
    Wang, Xinchen
    Wang, Ruihu
    ACS CATALYSIS, 2022, 12 (06) : 3550 - 3557
  • [23] Construction of glucose precursor carbon/TiO2 heterojunction with high ligand-to-metal charge transfer (LMCT) for visible light driven CO2 reduction
    Bafaqeer, Abdullah
    Amin, Nor Aishah Saidina
    Tahir, Muhammad
    Ummer, Aniz Chennampilly
    Thabit, Hammam Abdurabu
    Theravalappil, Rajesh
    Usman, Jamilu
    Ahmad, Nabeel
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 201 : 353 - 361
  • [24] A Cobalt-Modified Covalent Triazine-Based Framework as an Efficient Cocatalyst for Visible-Light-Driven Photocatalytic CO2 Reduction
    Bi, Jinhong
    Xu, Bin
    Sun, Long
    Huang, Huimin
    Fang, Shengqiong
    Li, Liuyi
    Wu, Ling
    CHEMPLUSCHEM, 2019, 84 (08): : 1149 - 1154
  • [25] A Covalent Triazine-Based Framework Consisting of Donor-Acceptor Dyads for Visible-Light-Driven Photocatalytic CO2 Reduction
    Zhong, Hong
    Hong, Zixiao
    Yang, Can
    Li, Liuyi
    Xu, Yangsen
    Wang, Xinchen
    Wang, Ruihu
    CHEMSUSCHEM, 2019, 12 (19) : 4493 - 4499
  • [26] Single-atom Cu sites on covalent organic frameworks with Kagome lattices for visible-light-driven CO2 reduction to propylene
    Hu, Yuanjun
    Liu, Guanhui
    Song, Ting
    Hu, Xiayi
    Long, Bei
    Deng, Guo-Jun
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2025, 361
  • [27] Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles
    Guo, Ke
    Zhu, Xiaoli
    Peng, Lianlian
    Fu, Yanghe
    Ma, Rui
    Lu, Xinqing
    Zhang, Fumin
    Zhu, Weidong
    Fan, Maohong
    CHEMICAL ENGINEERING JOURNAL, 2021, 405
  • [28] Trinuclear Re(I)-Coordinated Organic Cage as the Supramolecular Photocatalyst for Visible-Light-Driven CO2 Reduction
    Song, Jia-Qi
    Lu, Yu-Lin
    Yi, Shao-Zhe
    Zhang, Jian-Hua
    Pan, Mei
    Su, Cheng-Yong
    INORGANIC CHEMISTRY, 2023, 62 (31) : 12565 - 12572
  • [29] Coupling CsPbBr3 Quantum Dots with Covalent Triazine Frameworks for Visible-Light-Driven CO2 Reduction
    Wang, Qi
    Wang, Jin
    Wang, Ji-Chong
    Hu, Xin
    Bai, Yu
    Zhong, Xinhua
    Li, Zhengquan
    CHEMSUSCHEM, 2021, 14 (04) : 1131 - 1139
  • [30] Boosting CO2 Photoreduction via Regulating Charge Transfer Ability in a One-Dimensional Covalent Organic Framework
    Zou, Lei
    Chen, Zi-Ao
    Si, Duan-Hui
    Yang, Shuai-Long
    Gao, Wen-Qiang
    Wang, Kai
    Huang, Yuan-Biao
    Cao, Rong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (46)