Data-driven approaches to study the spectral properties of chemical structures

被引:2
作者
Masmali, Ibtisam [1 ]
Nadeem, Muhammad Faisal [2 ]
Mufti, Zeeshan Saleem [3 ]
Ahmad, Ali [4 ]
Koam, Ali N. A. [1 ]
Ghazwani, Haleemah [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, Jazan 45142, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[3] Univ Lahore, Dept Math & Stat, Lahore 54000, Pakistan
[4] Jazan Univ, Coll Engn & Comp Sci, Dept Comp Sci, Jazan 45142, Saudi Arabia
关键词
Predictive modeling; Machine learning; Bismuth tri-iodide; Benzene ring; Energy; Data-driven methodologies; Eigenvalues; INCIDENCE ENERGY; MACHINE; CHEMISTRY;
D O I
10.1016/j.heliyon.2024.e37459
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The molecular energy, which is the sum of all eigenvalues, is crucial in determining the total it-electron energy of conjugated hydrocarbon molecules. We used machine learning techniques to calculate the energy, inertia, nullity, signature, and Estrada index of molecular graphs for bismuth tri-iodide and benzene rings embedded in P-type surfaces within 2D networks. We applied MATLAB to extract the actual eigenvalues from the data and developed general equations for these molecular properties. We then used these equations to estimate the values and compared them to the actual values through graphical analysis. Our results demonstrate the potential of data-driven techniques in predicting molecular properties and enhancing our understanding of spectral theory.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Data-Driven Approaches to Energy Utilization Efficiency Enhancement in Intelligent Logistics
    Long, Xuan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (08) : 500 - 508
  • [42] Data-driven nonlinear model reduction to spectral submanifolds in mechanical systems
    Cenedese, M.
    Axas, J.
    Yang, H.
    Eriten, M.
    Haller, G.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2229):
  • [43] Classification for Dynamical Systems: Model-Based and Data-Driven Approaches
    Battistelli, Giorgio
    Tesi, Pietro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) : 1741 - 1748
  • [44] Data-Driven Approaches to Neuroimaging Analysis to Enhance Psychiatric Diagnosis and Therapy
    Zhang, Xiaolong
    Braun, Urs
    Tost, Heike
    Bassett, Danielle S.
    BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2020, 5 (08) : 780 - 790
  • [45] Data-Driven Approaches for Diagnosis of Incipient Faults in Cutting Arms of the Roadheader
    Liu, Qiang
    Liu, Songyong
    Dai, Qianjin
    Yu, Xiao
    Teng, Daoxiang
    Wei, Ming
    SHOCK AND VIBRATION, 2021, 2021
  • [46] Hybrid ROP modeling: Combining analytical and data-driven approaches for drilling
    Sharma, Ashutosh
    Burak, Tunc
    Nygaard, Runar
    Hoel, Espen
    Kristiansen, Tron
    Welmer, Morten
    GEOENERGY SCIENCE AND ENGINEERING, 2025, 251
  • [47] Data-Driven Approaches for Predicting and Forecasting Air Quality in Urban Areas
    Rosca, Cosmina-Mihaela
    Carbureanu, Madalina
    Stancu, Adrian
    APPLIED SCIENCES-BASEL, 2025, 15 (08):
  • [48] Data-driven approaches for cyber defense of battery energy storage systems
    Kharlamova, Nina
    Hashemi, Seyedmostafa
    Traeholt, Chresten
    ENERGY AND AI, 2021, 5
  • [49] Defining the Age of Young Ischemic Stroke Using Data-Driven Approaches
    Abedi, Vida
    Lambert, Clare
    Chaudhary, Durgesh
    Rieder, Emily
    Avula, Venkatesh
    Hwang, Wenke
    Li, Jiang
    Zand, Ramin
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (07)
  • [50] Theoretical and data-driven approaches to semiconductors and dielectrics: from prediction to experiment
    Oba, Fumiyasu
    Nagai, Takayuki
    Katsube, Ryoji
    Mochizuki, Yasuhide
    Tsuji, Masatake
    Deffrennes, Guillaume
    Hanzawa, Kota
    Nakano, Akitoshi
    Takahashi, Akira
    Terayama, Kei
    Tamura, Ryo
    Hiramatsu, Hidenori
    Nose, Yoshitaro
    Taniguchi, Hiroki
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2024, 25 (01)