Data-driven approaches to study the spectral properties of chemical structures

被引:2
作者
Masmali, Ibtisam [1 ]
Nadeem, Muhammad Faisal [2 ]
Mufti, Zeeshan Saleem [3 ]
Ahmad, Ali [4 ]
Koam, Ali N. A. [1 ]
Ghazwani, Haleemah [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, Jazan 45142, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[3] Univ Lahore, Dept Math & Stat, Lahore 54000, Pakistan
[4] Jazan Univ, Coll Engn & Comp Sci, Dept Comp Sci, Jazan 45142, Saudi Arabia
关键词
Predictive modeling; Machine learning; Bismuth tri-iodide; Benzene ring; Energy; Data-driven methodologies; Eigenvalues; INCIDENCE ENERGY; MACHINE; CHEMISTRY;
D O I
10.1016/j.heliyon.2024.e37459
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The molecular energy, which is the sum of all eigenvalues, is crucial in determining the total it-electron energy of conjugated hydrocarbon molecules. We used machine learning techniques to calculate the energy, inertia, nullity, signature, and Estrada index of molecular graphs for bismuth tri-iodide and benzene rings embedded in P-type surfaces within 2D networks. We applied MATLAB to extract the actual eigenvalues from the data and developed general equations for these molecular properties. We then used these equations to estimate the values and compared them to the actual values through graphical analysis. Our results demonstrate the potential of data-driven techniques in predicting molecular properties and enhancing our understanding of spectral theory.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Exploring data-driven chemical SMILES tokenization approaches to identify key protein-ligand binding moieties
    Temizer, Asu Busra
    Uludogan, Gokce
    Ozcelik, Riza
    Koulani, Taha
    Ozkirimli, Elif
    Ulgen, Kutlu O.
    Karali, Nilgun
    Ozgur, Arzucan
    MOLECULAR INFORMATICS, 2024, 43 (03)
  • [32] Empowering Students for the Data-Driven World: A Qualitative Study of the Relevance of Learning about Data-Driven Technologies
    Hoeper, Lukas
    Schulte, Carsten
    INFORMATICS IN EDUCATION, 2024, 23 (03): : 593 - 624
  • [33] Synergy of Model-driven and Data-driven Approaches in a Dynamic Network Loading Problem
    Kurtc, Valentina
    Prokhorov, Andrey
    TRAFFIC AND GRANULAR FLOW 2022, TGF 2022, 2024, 443 : 487 - 494
  • [34] Harnessing Data Augmentation and Normalization Preprocessing to Improve the Performance of Chemical Reaction Predictions of Data-Driven Model
    Zhang, Boyu
    Lin, Jiaping
    Du, Lei
    Zhang, Liangshun
    POLYMERS, 2023, 15 (09)
  • [35] Data-Driven Monitoring System for Preventing the Collapse of Scaffolding Structures
    Cho, Chunhee
    Kim, Kyungki
    Park, JeeWoong
    Cho, Yong K.
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2018, 144 (08)
  • [36] Design of asphalt rejuvenator structures based on data-driven methods
    Yan, Heng
    Wang, Yanghui
    Ding, Yongjie
    Qiao, Shuhan
    Xi, Yuan
    FUEL, 2025, 380
  • [37] Data-driven aerodynamic analysis of structures using Gaussian Processes
    Kavrakov, Igor
    McRobie, Allan
    Morgenthal, Guido
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2022, 222
  • [38] Data-driven inverse design of composite triangular lattice structures
    Peng, Xiang-Long
    Xu, Bai-Xiang
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 265
  • [39] Data-Driven Approaches for Estimation of EV Battery SoC and SoH: A Review
    Padder, Shahid Gulzar
    Ambulkar, Jayesh
    Banotra, Atul
    Modem, Sudhakar
    Maheshwari, Sidharth
    Jayaramulu, Kolleboyina
    Kundu, Chinmoy
    IEEE ACCESS, 2025, 13 : 35048 - 35067
  • [40] Data-driven approaches for identifying hyperparameters in multi-step retrosynthesis
    Westerlund, Annie M.
    Barge, Bente
    Mervin, Lewis
    Genheden, Samuel
    MOLECULAR INFORMATICS, 2023, 42 (11)