Data-driven approaches to study the spectral properties of chemical structures

被引:2
作者
Masmali, Ibtisam [1 ]
Nadeem, Muhammad Faisal [2 ]
Mufti, Zeeshan Saleem [3 ]
Ahmad, Ali [4 ]
Koam, Ali N. A. [1 ]
Ghazwani, Haleemah [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, Jazan 45142, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[3] Univ Lahore, Dept Math & Stat, Lahore 54000, Pakistan
[4] Jazan Univ, Coll Engn & Comp Sci, Dept Comp Sci, Jazan 45142, Saudi Arabia
关键词
Predictive modeling; Machine learning; Bismuth tri-iodide; Benzene ring; Energy; Data-driven methodologies; Eigenvalues; INCIDENCE ENERGY; MACHINE; CHEMISTRY;
D O I
10.1016/j.heliyon.2024.e37459
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The molecular energy, which is the sum of all eigenvalues, is crucial in determining the total it-electron energy of conjugated hydrocarbon molecules. We used machine learning techniques to calculate the energy, inertia, nullity, signature, and Estrada index of molecular graphs for bismuth tri-iodide and benzene rings embedded in P-type surfaces within 2D networks. We applied MATLAB to extract the actual eigenvalues from the data and developed general equations for these molecular properties. We then used these equations to estimate the values and compared them to the actual values through graphical analysis. Our results demonstrate the potential of data-driven techniques in predicting molecular properties and enhancing our understanding of spectral theory.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Editorial: Advances in data-driven approaches and modeling of complex systems
    Mohd, Mohd Hafiz
    Nguyen-Huu, Tri
    Park, Junpyo
    Addawe, Joel M.
    Haga, Hirohide
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [22] Pedestrian inertial navigation: An overview of model and data-driven approaches
    Klein, Itzik
    RESULTS IN ENGINEERING, 2025, 25
  • [23] Data-Driven Approaches in Antimicrobial Resistance: Machine Learning Solutions
    Sakagianni, Aikaterini
    Koufopoulou, Christina
    Koufopoulos, Petros
    Kalantzi, Sofia
    Theodorakis, Nikolaos
    Nikolaou, Maria
    Paxinou, Evgenia
    Kalles, Dimitris
    Verykios, Vassilios S.
    Myrianthefs, Pavlos
    Feretzakis, Georgios
    ANTIBIOTICS-BASEL, 2024, 13 (11):
  • [24] Data-Driven Wireless Anomaly Detection Using Spectral Features
    Frisbie, Stephan
    Younis, Mohamed
    2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
  • [25] Utilizing Data-Driven Approaches to Forecast Fluctuations in Groundwater Table
    Mirzaei, Majid
    Shirmohammadi, Adel
    WATER, 2024, 16 (11)
  • [26] Data-Driven Approaches for Distribution Transformer Health Monitoring: A Review
    Mogos, Aman Samson
    Liang, Xiaodong
    Chung, C. Y.
    2023 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE, 2023,
  • [27] Data-driven approaches for unveiling the neurophysiological functions of the auditory system
    Furukawa, Shigeto
    Terashima, Hiroki
    Koumura, Takuya
    Tsukano, Hiroaki
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2020, 41 (01) : 63 - 66
  • [28] Data-Driven Approaches for Characterization of Delamination Damage in Composite Materials
    Liu, Huan
    Liu, Shuo
    Liu, Zheng
    Mrad, Nezih
    Milani, Abbas S.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (03) : 2532 - 2542
  • [29] Detecting the bioaccumulation patterns of chemicals through data-driven approaches
    Grisoni, Francesca
    Consonni, Viviana
    Vighi, Marco
    CHEMOSPHERE, 2018, 208 : 273 - 284
  • [30] Augmenting insights from wind turbine data through data-driven approaches
    Moss, Coleman
    Maulik, Romit
    Iungo, Giacomo Valerio
    APPLIED ENERGY, 2024, 376