Data-driven approaches to study the spectral properties of chemical structures

被引:2
|
作者
Masmali, Ibtisam [1 ]
Nadeem, Muhammad Faisal [2 ]
Mufti, Zeeshan Saleem [3 ]
Ahmad, Ali [4 ]
Koam, Ali N. A. [1 ]
Ghazwani, Haleemah [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, Jazan 45142, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[3] Univ Lahore, Dept Math & Stat, Lahore 54000, Pakistan
[4] Jazan Univ, Coll Engn & Comp Sci, Dept Comp Sci, Jazan 45142, Saudi Arabia
关键词
Predictive modeling; Machine learning; Bismuth tri-iodide; Benzene ring; Energy; Data-driven methodologies; Eigenvalues; INCIDENCE ENERGY; MACHINE; CHEMISTRY;
D O I
10.1016/j.heliyon.2024.e37459
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The molecular energy, which is the sum of all eigenvalues, is crucial in determining the total it-electron energy of conjugated hydrocarbon molecules. We used machine learning techniques to calculate the energy, inertia, nullity, signature, and Estrada index of molecular graphs for bismuth tri-iodide and benzene rings embedded in P-type surfaces within 2D networks. We applied MATLAB to extract the actual eigenvalues from the data and developed general equations for these molecular properties. We then used these equations to estimate the values and compared them to the actual values through graphical analysis. Our results demonstrate the potential of data-driven techniques in predicting molecular properties and enhancing our understanding of spectral theory.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Towards Artificial Hydrocarbon Networks: The Chemical Nature of Data-Driven Approaches
    Ponce, Hiram
    2019 IEEE 14TH INTERNATIONAL SYMPOSIUM ON AUTONOMOUS DECENTRALIZED SYSTEM (ISADS), 2019, : 121 - 127
  • [2] Data-driven approaches tests on a laboratory drilling system
    Loken, Erik Andreas
    Lokkevik, Jens
    Sui, Dan
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2020, 10 (07) : 3043 - 3055
  • [3] Data-driven approaches in FinTech: a survey
    Tian, Xin
    He, Jing Selena
    Han, Meng
    INFORMATION DISCOVERY AND DELIVERY, 2021, 49 (02) : 123 - 135
  • [4] A Comparative Study on Data-Driven Prognostic Approaches Using Fleet Knowledge
    Cristaldi, Loredana
    Leone, Giacomo
    Ottoboni, Roberto
    Subbiah, Subanatarajan
    Turrin, Simone
    2016 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, 2016, : 263 - 268
  • [5] Organic Solvent Nanofiltration and Data-Driven Approaches
    Piccard, Pieter-Jan
    Borges, Pedro
    Cleuren, Bart
    Hooyberghs, Jef
    Buekenhoudt, Anita
    SEPARATIONS, 2023, 10 (09)
  • [6] Integrating knowledge-driven and data-driven approaches to modeling
    Todorovski, L
    Dzeroski, S
    ECOLOGICAL MODELLING, 2006, 194 (1-3) : 3 - 13
  • [7] Data-driven prediction of physicochemical properties of organic molecules
    Sun, Yi-Zhou
    Tang, Miaojiong
    Zhang, Shuoqing
    Hong, Xin
    CHINESE SCIENCE BULLETIN-CHINESE, 2025, 70 (4-5): : 492 - 507
  • [8] Data-driven approaches for runoff prediction using distributed data
    Han, Heechan
    Morrison, Ryan R.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (08) : 2153 - 2171
  • [9] Data-driven approaches for runoff prediction using distributed data
    Heechan Han
    Ryan R. Morrison
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 2153 - 2171
  • [10] Steel Quality Monitoring Using Data-Driven Approaches: ArcelorMittal Case Study
    Laib, Mohamed
    Aggoune, Riad
    Crespo, Rafael
    Hubsch, Pierre
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2022 WORKSHOPS, PT I, 2022, 13377 : 63 - 76