Data-driven based financial analysis of concentrated solar power integrating biomass and thermal energy storage: A profitability perspective

被引:1
|
作者
Alawi, Omer A. [1 ]
Yaseen, Zaher Mundher [2 ,3 ]
机构
[1] Univ Teknol Malaysia, Sch Mech Engn, Dept Thermofluids, UTM Skudai, Johor Baharu 81310, Malaysia
[2] Al Ayen Univ, Sci Res Ctr, New Era & Dev Civil Engn Res Grp, Thi Qar 64001, Iraq
[3] King Fahd Univ Petr & Minerals, Civil & Environm Engn Dept, Dhahran 31261, Saudi Arabia
关键词
Profitability factor; Concentrated solar power (CSP); Decision tree; Biomass; Solar tower; Thermal energy storage; TECHNOECONOMIC ASSESSMENT; THERMODYNAMIC EVALUATION; CSP PLANTS; TECHNOLOGIES; GENERATION; HYBRIDIZATION; STRATEGY; SYSTEMS; GASIFICATION; OPTIMIZATION;
D O I
10.1016/j.biombioe.2024.107306
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This study utilizes decision tree algorithms to estimate the financial feasibility of concentrated solar power (CSP). The main focus of CSP is on solar tower (ST) technology combined with two backup systems, such as biomass boilers and thermal energy storage (TES). The main goal is to develop three decision tree algorithms to predict the power plant's profitability factor (PF) for each of the following three operational scenarios: solar tower-base case-no biomass (ST-BC-NB), solar tower-operation strategy 1-medium biomass (ST-OS1-MB), and solar toweroperation strategy 2-full biomass (ST-OS2-FB). PF was predicted according to main input parameters, including direct capital costs, biomass cost, annual escalation rate, hourly electricity price, annual escalation rate, and peaks and troughs for daily electricity prices. Thermal energy storage was in five different capacities: no-thermal energy storage (No-TES), 5 h, 10 h, 15 h, and 20 h. The decision tree models demonstrated accurate predictions with low errors, high confidence levels, and most data falling within the 95% confidence interval for the "No-TES" case. Solar power plants with biomass backup had a 30% reduction in generation costs compared to conventional plants. The configurations without thermal energy storage had the highest profitability, with a maximum PF of -0.014 USD/kWh and a 25% chance of achieving profitability.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Performance analysis of a novel biomass thermochemical conversion cascade utilization system driven by concentrated solar energy
    Yang, Xiaoxia
    Zhong, Dian
    Zeng, Kuo
    Li, Jun
    Chen, Xin
    Yang, Haiping
    Chen, Hanping
    ENERGY, 2025, 323
  • [32] A comparative study of sensible energy storage and hydrogen energy storage apropos to a concentrated solar thermal power plant
    Mukherjee, Shubha Sankar
    Meshram, Himani Anand
    Rakshit, Dibakar
    Saha, Bidyut Baran
    JOURNAL OF ENERGY STORAGE, 2023, 61
  • [33] Exergy Analysis of Concentrated Solar Power Plants with Thermochemical Energy Storage Based on Calcium Looping
    Chen, Xiaoyi
    Jin, Xiaogang
    Ling, Xiang
    Wang, Yan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (21) : 7928 - 7941
  • [34] Energy, exergy, and exergoeconomic analysis of a polygeneration system driven by solar energy with a thermal energy storage tank for power, heating, and freshwater production
    Xi, Zhang
    Eshaghi, Soroush
    Sardari, Farshid
    JOURNAL OF ENERGY STORAGE, 2021, 36
  • [35] Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant
    Ma, Zhao
    Li, Ming-Jia
    Zhang, K. Max
    Yuan, Fan
    ENERGY, 2021, 216
  • [36] Techno-economic analysis on the design of sensible and latent heat thermal energy storage systems for concentrated solar power plants
    Liu, Ming
    Jacob, Rhys
    Belusko, Martin
    Riahi, Soheila
    Bruno, Frank
    RENEWABLE ENERGY, 2021, 178 : 443 - 455
  • [37] Thermal Storage for the Analysis of Hybrid Energy Systems Based on Geothermal and Solar Power
    Aravind, K. U.
    Mekala, N. Muthu
    Muthuraju, N. P.
    Soni, N. B.
    Al-Ammar, Essam A.
    Seikh, A. H.
    Siddique, M. H.
    Christopher, David
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2022, 2022
  • [39] Parametric study for a structured thermal energy storage system for concentrated solar power plants
    Sanmarti, Oriol
    Vera, Jordi
    Torras, Santiago
    Perez-Segarra, Carlos D.
    ENERGY, 2024, 305
  • [40] Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems
    Temiz, Mert
    Dincer, Ibrahim
    ENERGY, 2021, 219