Data-driven based financial analysis of concentrated solar power integrating biomass and thermal energy storage: A profitability perspective

被引:1
|
作者
Alawi, Omer A. [1 ]
Yaseen, Zaher Mundher [2 ,3 ]
机构
[1] Univ Teknol Malaysia, Sch Mech Engn, Dept Thermofluids, UTM Skudai, Johor Baharu 81310, Malaysia
[2] Al Ayen Univ, Sci Res Ctr, New Era & Dev Civil Engn Res Grp, Thi Qar 64001, Iraq
[3] King Fahd Univ Petr & Minerals, Civil & Environm Engn Dept, Dhahran 31261, Saudi Arabia
关键词
Profitability factor; Concentrated solar power (CSP); Decision tree; Biomass; Solar tower; Thermal energy storage; TECHNOECONOMIC ASSESSMENT; THERMODYNAMIC EVALUATION; CSP PLANTS; TECHNOLOGIES; GENERATION; HYBRIDIZATION; STRATEGY; SYSTEMS; GASIFICATION; OPTIMIZATION;
D O I
10.1016/j.biombioe.2024.107306
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This study utilizes decision tree algorithms to estimate the financial feasibility of concentrated solar power (CSP). The main focus of CSP is on solar tower (ST) technology combined with two backup systems, such as biomass boilers and thermal energy storage (TES). The main goal is to develop three decision tree algorithms to predict the power plant's profitability factor (PF) for each of the following three operational scenarios: solar tower-base case-no biomass (ST-BC-NB), solar tower-operation strategy 1-medium biomass (ST-OS1-MB), and solar toweroperation strategy 2-full biomass (ST-OS2-FB). PF was predicted according to main input parameters, including direct capital costs, biomass cost, annual escalation rate, hourly electricity price, annual escalation rate, and peaks and troughs for daily electricity prices. Thermal energy storage was in five different capacities: no-thermal energy storage (No-TES), 5 h, 10 h, 15 h, and 20 h. The decision tree models demonstrated accurate predictions with low errors, high confidence levels, and most data falling within the 95% confidence interval for the "No-TES" case. Solar power plants with biomass backup had a 30% reduction in generation costs compared to conventional plants. The configurations without thermal energy storage had the highest profitability, with a maximum PF of -0.014 USD/kWh and a 25% chance of achieving profitability.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The perspective of enhanced geothermal energy integration with concentrated solar power and thermal energy storage
    Boretti, Alberto
    ENERGY STORAGE, 2022, 4 (01)
  • [2] Thermal energy storage technologies for concentrated solar power - A review from a materials perspective
    Palacios, A.
    Barreneche, C.
    Navarro, M. E.
    Ding, Y.
    RENEWABLE ENERGY, 2020, 156 : 1244 - 1265
  • [3] Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts
    Gonzalez-Roubaud, Edouard
    Perez-Osorio, David
    Prieto, Cristina
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 80 : 133 - 148
  • [4] Numerical analysis of demolition waste-based thermal energy storage system for concentrated solar power plants
    Kocak, Burcu
    Paksoy, Halime
    ENERGY STORAGE, 2024, 6 (01)
  • [5] Techno-economic analysis of solar hydrogen production via PV power/concentrated solar heat driven solid oxide electrolysis with electrical/thermal energy storage
    Zhang, Yumeng
    Wang, Zhuo
    Du, Zhiyu
    Li, Yue
    Qian, Meng
    Van Herle, Jan
    Wang, Ligang
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [6] Economic implications of thermal energy storage for concentrated solar thermal power
    Wagner, Sharon J.
    Rubin, Edward S.
    RENEWABLE ENERGY, 2014, 61 : 81 - 95
  • [7] Techno-economic assessment of technological improvements in thermal energy storage of concentrated solar power
    Andika, Riezqa
    Kim, Young
    Yoon, Seok Ho
    Kim, Dong Ho
    Choi, Jun Seok
    Lee, Moonyong
    SOLAR ENERGY, 2017, 157 : 552 - 558
  • [8] An optimization model for sizing a concentrated solar power system with thermal energy storage
    Ghaithan, Ahmed M.
    ENERGY SYSTEMS-OPTIMIZATION MODELING SIMULATION AND ECONOMIC ASPECTS, 2024,
  • [9] Optimal Unit Commitment with Concentrated Solar Power and Thermal Energy Storage in Afghanistan Electrical System
    Ibrahimi, Abdul Matin
    Howlader, Harun Or Rashid
    Danish, Mir Sayed Shah
    Shigenobu, Ryuto
    Sediqi, Mohammad Masih
    Senjyu, Tomonobu
    INTERNATIONAL JOURNAL OF EMERGING ELECTRIC POWER SYSTEMS, 2019, 20 (03):
  • [10] Thermal energy storage systems for concentrated solar power plants
    Pelay, Ugo
    Luo, Lingai
    Fan, Yilin
    Stitou, Driss
    Rood, Mark
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 79 : 82 - 100