Kendall Conditional Value-at-Risk

被引:1
作者
Durante, Fabrizio [1 ]
Gatto, Aurora [1 ]
Perrone, Elisa [2 ]
机构
[1] Univ Salento, Ctr Ecotekne, SP 6, Lecce, Italy
[2] Eindhoven Univ Technol, Groene Loper 5, NL-5612 AZ Eindhoven, Netherlands
来源
MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF 2022 | 2022年
关键词
Copula; Systemic risk; Value-at-Risk; MULTIVARIATE; COVAR;
D O I
10.1007/978-3-030-99638-3_36
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The Conditional Value-at-Risk (CoVaR) is a modified version of the Value-at-Risk (VaR) to quantify the risk of a random variable Y with respect to another random variable X. In this work, we consider a multivariate modification of CoVaR based on the Kendall distribution function. In particular, we discuss two possible hazard scenarios that generalize the standard CoVar and use the copula theory to derive the corresponding risk quantities. We consider a systemic risk exercise of the Italian banking system to demonstrate how the multivariate modification of CoVaR can be useful to analyze the resilience of a system when some parts of it are under distress.
引用
收藏
页码:222 / 227
页数:6
相关论文
共 18 条
[11]   On dependence consistency of CoVaR and some other systemic risk measures [J].
Mainik, Georg ;
Schaanning, Eric .
STATISTICS & RISK MODELING, 2014, 31 (01) :49-77
[12]  
Nagler T., 2018, Rvinecopulib: High Performance Algorithms for Vine Copula Modeling
[13]   Kendall distributions and level sets in bivariate exchangeable survival models [J].
Nappo, Giovanna ;
Spizzichino, Fabio .
INFORMATION SCIENCES, 2009, 179 (17) :2878-2890
[14]   Spin-off Extreme Value and Archimedean copulas for estimating the bivariate structural risk [J].
Pappada, R. ;
Perrone, E. ;
Durante, F. ;
Salvadori, G. .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2016, 30 (01) :327-342
[15]   Modelling asymmetric exchange rate dependence [J].
Patton, AJ .
INTERNATIONAL ECONOMIC REVIEW, 2006, 47 (02) :527-556
[16]   A review of copula models for economic time series [J].
Patton, Andrew J. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 110 :4-18
[17]   A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities [J].
Salvadori, G. ;
Durante, F. ;
De Michele, C. ;
Bernardi, M. ;
Petrella, L. .
WATER RESOURCES RESEARCH, 2016, 52 (05) :3701-3721
[18]   On the return period and design in a multivariate framework [J].
Salvadori, G. ;
De Michele, C. ;
Durante, F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (11) :3293-3305