On the numerical corroboration of an obstacle problem for linearly elastic flexural shells

被引:0
作者
Peng, Xin [1 ]
Piersanti, Paolo [2 ,3 ,4 ]
Shen, Xiaoqin [1 ]
机构
[1] Xian Univ Technol, Sch Sci, Dept Appl Math, POB 1243,Yanxiang Rd 58, Xian 710054, Shaanxi, Peoples R China
[2] Indiana Univ Bloomington, Dept Math, 729 East Third St, Bloomington, IN 47405 USA
[3] Indiana Univ Bloomington, Inst Sci Comp & Appl Math, 729 East Third St, Bloomington, IN 47405 USA
[4] Chinese Univ Hong Kong Shenzhen, Sch Sci & Engn, 2001 Longxiang Blvd, Shenzhen 518172, Peoples R China
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2024年 / 382卷 / 2277期
关键词
obstacle problems; flexural shell; variational inequalities; penalty method; finite element method; JUSTIFICATION; DISPLACEMENT; MODEL;
D O I
10.1098/rsta.2023.0306
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we study the numerical corroboration of a variational model governed by a fourth-order elliptic operator that describes the deformation of a linearly elastic flexural shell subjected not to cross a prescribed flat obstacle. The problem under consideration is modelled by means of a set of variational inequalities posed over a non-empty, closed and convex subset of a suitable Sobolev space and is known to admit a unique solution. Qualitative and quantitative numerical experiments corroborating the validity of the model and its asymptotic similarity with Koiter's model are also presented.This article is part of the theme issue 'Non-smooth variational problems with applications in mechanics'.
引用
收藏
页数:14
相关论文
共 40 条
  • [1] Ahrens J., 2005, VISUALIZATION HDB, P717
  • [2] Existence and uniqueness for the linear Koiter model for shells with little regularity
    Blouza, A
    Le Dret, H
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 1999, 57 (02) : 317 - 337
  • [3] A posteriori analysis of penalized and mixed formulations of Koiter's shell model
    Blouza, Adel
    El Alaoui, Linda
    Mani-Aouadi, Saloua
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 296 : 138 - 155
  • [4] Brenner S. C., 2008, The mathematical theory of finite element methods
  • [5] A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates
    Brenner, Susanne C.
    Sung, Li-yeng
    Zhang, Hongchao
    Zhang, Yi
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 254 : 31 - 42
  • [6] Brzis H., 1951, Bul. Soc. Math. France, V79, P153, DOI [10.24033/bsmf.1663, DOI 10.24033/BSMF.1663]
  • [7] Caffarelli L. A., 1979, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, V6, P151
  • [8] THE 2-OBSTACLE PROBLEM FOR THE BIHARMONIC OPERATOR
    CAFFARELLI, LA
    FRIEDMAN, A
    TORELLI, A
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1982, 103 (02) : 325 - 335
  • [9] On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics
    Calvo, N
    Díaz, JI
    Durany, J
    Schiavi, E
    Vázquez, C
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (02) : 683 - 707
  • [10] Chapelle D, 2011, COMPUT FLUID SOLID M, P1, DOI 10.1007/978-3-642-16408-8