On absolutely continuous spectrum for one-channel unitary operators

被引:1
作者
Bourget, Olivier [1 ]
Moreno, Gregorio [1 ]
Sadel, Christian [1 ]
Taarabt, Amal [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
关键词
Quantum walks; Transfer matrices; Spectral measure; Disordered scattering zippers; Delocalization; AC spectrum; RANDOM SCHRODINGER-OPERATORS; ANDERSON MODEL; TRANSFER-MATRICES; LARGE DEVIATIONS; QUANTUM WALKS; LOCALIZATION; TREE; PROOF;
D O I
10.1007/s11005-024-01866-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we develop the radial transfer matrix formalism for unitary one-channel operators. This generalizes previous formalisms for CMV matrices and scattering zippers. We establish an analog of Carmona's formula and deduce criteria for absolutely continuous spectrum which we apply to random Hilbert Schmidt perturbations of periodic scattering zippers.
引用
收藏
页数:41
相关论文
共 54 条
[1]   LOCALIZATION AT LARGE DISORDER AND AT EXTREME ENERGIES - AN ELEMENTARY DERIVATION [J].
AIZENMAN, M ;
MOLCHANOV, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (02) :245-278
[2]  
AIZENMAN M., 2015, Random Operators: disorder effects on Quantum Spectra and Dynamics, V168
[3]   Stability of the absolutely continuous spectrum of random Schrodinger operators on tree graphs [J].
Aizenman, Michael ;
Sims, Robert ;
Warzel, Simone .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (03) :363-394
[4]   Resonant delocalization for random Schrodinger operators on tree graphs [J].
Aizenman, Michael ;
Warzel, Simone .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (04) :1167-1222
[5]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[6]   On stable quantum currents [J].
Asch, Joachim ;
Bourget, Olivier ;
Joye, Alain .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (09)
[7]   Spectral stability of unitary network models [J].
Asch, Joachim ;
Bourget, Olivier ;
Joye, Alain .
REVIEWS IN MATHEMATICAL PHYSICS, 2015, 27 (07)
[8]   Dynamical Localization of the Chalker-Coddington Model far from Transition [J].
Asch, Joachim ;
Bourget, Olivier ;
Joye, Alain .
JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (01) :194-205
[9]   Localization Properties of the Chalker-Coddington Model [J].
Asch, Joachim ;
Bourget, Olivier ;
Joye, Alain .
ANNALES HENRI POINCARE, 2010, 11 (07) :1341-1373
[10]   On localization in the continuous Anderson-Bernoulli model in higher dimension [J].
Bourgain, J ;
Kenig, CE .
INVENTIONES MATHEMATICAE, 2005, 161 (02) :389-426