Using Causal Discovery to Design Agent-Based Models

被引:1
作者
Janssen, Stef [1 ]
Sharpanskykh, Alexei [1 ]
Ziabari, S. Sahand Mohammadi [1 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
来源
MULTI-AGENT-BASED SIMULATION XXII, MABS 2021 | 2022年 / 13128卷
关键词
Causal discovery; Agent-based modelling; Airport security; PROTOCOL; SECURITY;
D O I
10.1007/978-3-030-94548-0_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Designing agent-based models is a difficult task. Some guidelines exist to aid modelers in designing their models, but they generally do not include specific details on how the behavior of agents can be defined. This paper therefore proposes the AbCDe methodology, which uses causal discovery algorithms to specify agent behavior. The methodology combines important expert insights with causal graphs generated by causal discovery algorithms based on real-world data. This causal graph represents the causal structure among agent-related variables, which is then translated to behavioral properties in the agent-based model. To demonstrate the AbCDe methodology, it is applied to a case study in the airport security domain. In this case study, we explore a new concept of operations, using a service lane, to improve the efficiency of the security checkpoint. Results show that the models generated with the AbCDe methodology have a closer resemblance with the validation data than a model defined by experts alone.
引用
收藏
页码:15 / 28
页数:14
相关论文
共 29 条
[1]  
[Anonymous], 2004, PROC INT C COMPLEX S, DOI DOI 10.1109/ICVD.2004.1261037
[2]   UML for ABM [J].
Bersini, Hugues .
JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION, 2012, 15 (01)
[3]  
Casini L, 2016, The IAS Working Paper Series, P80
[4]   LEARNING HIGH-DIMENSIONAL DIRECTED ACYCLIC GRAPHS WITH LATENT AND SELECTION VARIABLES [J].
Colombo, Diego ;
Maathuis, Marloes H. ;
Kalisch, Markus ;
Richardson, Thomas S. .
ANNALS OF STATISTICS, 2012, 40 (01) :294-321
[5]  
Daniel W.W., 1990, Appl. Nonparametr. Stat., V2
[6]   A standard protocol for describing individual-based and agent-based models [J].
Grimm, Volker ;
Berger, Uta ;
Bastiansen, Finn ;
Eliassen, Sigrunn ;
Ginot, Vincent ;
Giske, Jarl ;
Goss-Custard, John ;
Grand, Tamara ;
Heinz, Simone K. ;
Huse, Geir ;
Huth, Andreas ;
Jepsen, Jane U. ;
Jorgensen, Christian ;
Mooij, Wolf M. ;
Mueller, Birgit ;
Pe'er, Guy ;
Piou, Cyril ;
Railsback, Steven F. ;
Robbins, Andrew M. ;
Robbins, Martha M. ;
Rossmanith, Eva ;
Rueger, Nadja ;
Strand, Espen ;
Souissi, Sami ;
Stillman, Richard A. ;
Vabo, Rune ;
Visser, Ute ;
DeAngelis, Donald L. .
ECOLOGICAL MODELLING, 2006, 198 (1-2) :115-126
[7]   The ODD protocol A review and first update [J].
Grimm, Volker ;
Berger, Uta ;
DeAngelis, Donald L. ;
Polhill, J. Gary ;
Giske, Jarl ;
Railsback, Steven F. .
ECOLOGICAL MODELLING, 2010, 221 (23) :2760-2768
[8]   A method for agent-based models validation [J].
Guerini, Mattia ;
Moneta, Alessio .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2017, 82 :125-141
[9]  
Hauser A, 2012, J MACH LEARN RES, V13, P2409
[10]  
Janssen S, 2019, PROCEEDINGS OF THE 2019 SUMMER SIMULATION CONFERENCE (SUMMERSIM '19)