The volume of pseudoeffective line bundles and partial equilibrium

被引:1
作者
Darvas, Tamas [1 ]
Xia, Mingchen
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
BERGMAN KERNELS; KAHLER-METRICS; THEOREM; ASYMPTOTICS; EQUATIONS; GEODESICS; ENERGY; BODIES; SPACE;
D O I
10.2140/gt.2024.28.1957
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (L, he(-u)) be a pseudoeffective line bundle on an n-dimensional compact Kahler manifold X. Let h(0) (X, L-k circle times I(ku)) be the dimension of the space of sections s of L-k such that h(k) (s, s)e(-ku) is integrable. We show that the limit of k(-n)h(0)(X, L-k circle times I(ku)) exists, and equals the nonpluripolar volume of P[u](I), the I-model potential associated to u. We give applications of this result to Kahler quantization: fixing a Bernstein-Markov measure nu, we show that the partial Bergman measures of u converge weakly to the nonpluripolar Monge-Ampere measure of P[u](I), the partial equilibrium.
引用
收藏
页码:1957 / 1993
页数:40
相关论文
共 66 条