Global transcription regulation revealed from dynamical correlations in time-resolved single-cell RNA sequencing

被引:1
作者
Volteras, Dimitris [1 ]
Shahrezaei, Vahid [1 ]
Thomas, Philipp [1 ]
机构
[1] Imperial Coll London, Fac Nat Sci, Dept Math, London SW7 2AZ, England
关键词
STOCHASTIC GENE-EXPRESSION; ANALYTICAL DISTRIBUTIONS; MODEL SELECTION; NOISE; CHALLENGES; SIZE;
D O I
10.1016/j.cels.2024.07.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell transcriptomics reveals significant variations in transcriptional activity across cells. Yet, it remains challenging to identify mechanisms of transcription dynamics from static snapshots. It is thus still unknown what drives global transcription dynamics in single cells. We present a stochastic model of gene expression with cell size- and cell cycle-dependent rates in growing and dividing cells that harnesses temporal dimensions of single-cell RNA sequencing through metabolic labeling protocols and cel lcycle reporters. We develop a parallel and highly scalable approximate Bayesian computation method that corrects for technical variation and accurately quantifies absolute burst frequency, burst size, and degradation rate along the cell cycle at a transcriptome-wide scale. Using Bayesian model selection, we reveal scaling between transcription rates and cell size and unveil waves of gene regulation across the cell cycle-dependent transcriptome. Our study shows that stochastic modeling of dynamical correlations identifies global mechanisms of transcription regulation. A record of this paper's transparent peer review process is included in the supplemental information.
引用
收藏
页码:694 / 708.e12
页数:28
相关论文
共 83 条
  • [21] Functional roles for noise in genetic circuits
    Eldar, Avigdor
    Elowitz, Michael B.
    [J]. NATURE, 2010, 467 (7312) : 167 - 173
  • [22] Time-resolved single-cell RNA-seq using metabolic RNA labelling
    Erhard, Florian
    Saliba, Antoine-Emmanuel
    Lusser, Alexandra
    Toussaint, Christophe
    Hennig, Thomas
    Prusty, Bhupesh K.
    Kirschenbaum, Daniel
    Abadie, Kathleen
    Miska, Eric A.
    Friedel, Caroline C.
    Amit, Ido
    Micura, Ronald
    Doelken, Lars
    [J]. NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [23] scSLAM-seq reveals core features of transcription dynamics in single cells
    Erhard, Florian
    Baptista, Marisa A. P.
    Krammer, Tobias
    Hennig, Thomas
    Lange, Marius
    Arampatzi, Panagiota
    Juerges, Christopher S.
    Theis, Fabian J.
    Saliba, Antoine-Emmanuel
    Doelken, Lars
    [J]. NATURE, 2019, 571 (7765) : 419 - +
  • [24] Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion
    Froehlich, Fabian
    Thomas, Philipp
    Kazeroonian, Atefeh
    Theis, Fabian J.
    Grima, Ramon
    Hasenauer, Jan
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (07)
  • [25] Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments
    Gorin, Gennady
    Vastola, John J.
    Fang, Meichen
    Pachter, Lior
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [26] RNA velocity unraveled
    Gorin, Gennady
    Fang, Meichen
    Chari, Tara
    Pachter, Lior
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (09)
  • [27] Stochastic simulation and statistical inference platform for visualization and estimation of transcriptional kinetics
    Gorin, Gennady
    Wang, Mengyu
    Golding, Ido
    Xu, Heng
    [J]. PLOS ONE, 2020, 15 (03):
  • [28] Quantifying and correcting bias in transcriptional parameter inference from single-cell data
    Grima, Ramon
    Esmenjaud, Pierre -Marie
    [J]. BIOPHYSICAL JOURNAL, 2024, 123 (01) : 4 - 30
  • [29] Ham L, 2021, ELIFE, V10, DOI [10.7554/eLife.69324, 10.7554/eLife.69324.sa1, 10.7554/eLife.69324.sa2]
  • [30] Exactly solvable models of stochastic gene expression
    Ham, Lucy
    Schnoerr, David
    Brackston, Rowan D.
    Stumpf, Michael P. H.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (14)