Optimizing Task Completion Rate in Multi-user Edge Intelligence Networks Through Neural Network-Based Energy Management with Partitioning and Offloading

被引:0
作者
Kumar, Kotha Harish [1 ]
Kumar, Vadapally Praveen [1 ]
Sreedhar, Daithala [2 ]
Sathish, Nandigama [3 ]
Prasad, J. Phani [4 ]
机构
[1] CVR Coll Engn, Dept CSE Data Sci, Hyderabad, India
[2] Nalla Narsimha Reddy Grp Inst, Dept CSE, Hyderabad, India
[3] Priyadarshini Inst Sci & Technol Women, Dept CSE, Khammam, Telangana, India
[4] CVR Coll Engn, Dept CSE AI & ML, Hyderabad, India
来源
ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2023, PT I | 2024年 / 2090卷
关键词
Neural Networks; Edge servers; IoT; Cloud computing; GoogleNet; CLOUD; ARCHITECTURE; INTERNET;
D O I
10.1007/978-3-031-64076-6_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the challenge of running large-scale neural networks (NNs) directly on energy-constrained IoT devices, proposing the Energy-Management Neural Net Partitioning and Offloading (EMNPO) technique. Through NN partitioning, where specific layers are outsourced to edge servers, EMNPO utilizes dynamic programming and the theorem of minimum cut/maximum flow to efficiently solve the optimization problem posed by constrained server resources. Decomposing the problem into manageable subproblems, EMNPOachieves solutions in polynomial time, significantly improving NN inference task completion rates compared to other methods. An investigation into the impact of energy constraints, NN types, and device counts demonstrates EMNPO's superiority, highlighted by simulation results with real NN models. This affirms the practical effectiveness of EMNPO in enhancing the efficiency of edge intelligence systems in real-world scenarios, addressing the impracticality of running large-scale NNs directly on IoT devices with constrained energy.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 17 条
[1]   Energy-Efficient Cloud Computing [J].
Berl, Andreas ;
Gelenbe, Erol ;
Di Girolamo, Marco ;
Giuliani, Giovanni ;
De Meer, Hermann ;
Dang, Minh Quan ;
Pentikousis, Kostas .
COMPUTER JOURNAL, 2010, 53 (07) :1045-1051
[2]   DNNOff: Offloading DNN-Based Intelligent IoT Applications in Mobile Edge Computing [J].
Chen, Xing ;
Li, Ming ;
Zhong, Hao ;
Ma, Yun ;
Hsu, Ching-Hsien .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (04) :2820-2829
[3]   Heterogeneous Space and Terrestrial Integrated Networks for IoT: Architecture and Challenges [J].
Chien, Wei-Che ;
Lai, Chin-Feng ;
Hossain, M. Shamim ;
Muhammad, Ghulam .
IEEE NETWORK, 2019, 33 (01) :15-21
[4]   Optimization Approach for Resource Allocation on Cloud Computing for IoT [J].
Choi, Yeongho ;
Lim, Yujin .
INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2016,
[5]  
Lu Tan, 2010, 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE 2010), P376, DOI 10.1109/ICACTE.2010.5579543
[6]  
Mahmud R., 2018, Internet Everything: Algorithms, Methodol., Technol. Perspect., P103, DOI DOI 10.1007/978-981-10-5861-5_5
[7]  
Marinos A, 2009, LECT NOTES COMPUT SC, V5931, P472, DOI 10.1007/978-3-642-10665-1_43
[8]  
Mishra B.S.P., 2018, Cloud Computing for Optimization: Foundations, Applications, and Challenges, DOI [10.1007/978-3-319-73676-1, DOI 10.1007/978-3-319-73676-1]
[9]   Key Challenges in Cloud Computing Enabling the Future Internet of Services [J].
Moreno-Vozmediano, Rafael ;
Montero, Ruben S. ;
Llorente, Ignacio M. .
IEEE INTERNET COMPUTING, 2013, 17 (04) :18-25
[10]   Joint Multiuser DNN Partitioning and Computational Resource Allocation for Collaborative Edge Intelligence [J].
Tang, Xin ;
Chen, Xu ;
Zeng, Liekang ;
Yu, Shuai ;
Chen, Lin .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12) :9511-9522