Sparse DOA Estimation With Polarimetric Arrays

被引:0
作者
Aubry, Augusto [1 ]
Boddi, Marco [1 ]
De Maio, Antonio [1 ]
Rosamilia, Massimo [1 ]
机构
[1] Univ Napoli Federico II, Dept Elect Engn & Informat Technol, DIETI, I-80125 Naples, Italy
来源
IEEE OPEN JOURNAL OF SIGNAL PROCESSING | 2024年 / 5卷
关键词
Direction-of-arrival estimation; Vectors; Atoms; Signal processing algorithms; Sensors; Maximum likelihood estimation; Covariance matrices; DOA estimation; high resolution; polarimetry; sparse methods; PERFORMANCE ANALYSIS; ESPRIT; RADAR; ANGLE;
D O I
10.1109/OJSP.2024.3411468
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the Direction-of-Arrival (DOA) estimation problem using a narrowband polarimetric array sensing system. The considered receiving equipment is composed of two sub-arrays of sensors with orthogonal polarizations. By suitably modeling the received signal via a sparse representation (accounting for the multiple snapshots and the polarimetric array manifold structure), two iterative algorithms, namely Polarimetric Sparse Learning via Iterative Minimization (POL-SLIM) and Polarimetric Sparse Iterative Covariance-based Estimation (POL-SPICE), are devised to accomplish the estimation task. The proposed algorithms provide accurate DOA estimates while enjoying nice (rigorously proven) convergence properties. Numerical analysis shows the effectiveness of POL-SLIM and POL-SPICE to successfully locate signal sources in both passive sensing applications (with large numbers of collected snapshots) and radar spatial processing, also in comparison with single-polarization counterparts as well as theoretical benchmarks.
引用
收藏
页码:886 / 901
页数:16
相关论文
共 46 条
  • [1] Ainslie MA, 2010, SPRINGER-PRAX BOOKS, P1, DOI 10.1007/978-3-540-87662-5
  • [2] Optimality Claims for the FML Covariance Estimator with respect to Two Matrix Norms
    Aubry, A.
    De Maio, A.
    Carotenuto, V.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (03) : 2055 - 2057
  • [3] Aubry A. De Maio, 2022, Ser. Radar, Sonar and Navigation
  • [4] Adaptive Radar Detection and Bearing Estimation in the Presence of Unknown Mutual Coupling
    Aubry, Augusto
    De Maio, Antonio
    Lan, Lan
    Rosamilia, Massimo
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1248 - 1262
  • [5] Structured Covariance Matrix Estimation With Missing-(Complex) Data for Radar Applications via Expectation-Maximization
    Aubry, Augusto
    De Maio, Antonio
    Marano, Stefano
    Rosamilia, Massimo
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5920 - 5934
  • [6] Experimental Analysis of Block-Sparsity-Based Spectrum Sensing Techniques for Cognitive Radar
    Aubry, Augusto
    Carotenuto, Vincenzo
    De Maio, Antonio
    Govoni, Mark A.
    Farina, Alfonso
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (01) : 355 - 370
  • [7] Multi-Snapshot Spectrum Sensing for Cognitive Radar via Block-Sparsity Exploitation
    Aubry, Augusto
    Carotenuto, Vincenzo
    De Maio, Antonio
    Govoni, Mark A.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (06) : 1396 - 1406
  • [8] Bertsekas Dimitri P, 1997, Journal of the Operational Research Society, V48, P334, DOI 10.1057/palgrave.jors.2600425
  • [9] EXACT MAXIMUM-LIKELIHOOD PARAMETER-ESTIMATION OF SUPERIMPOSED EXPONENTIAL SIGNALS IN NOISE
    BRESLER, Y
    MACOVSKI, A
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, 34 (05): : 1081 - 1089
  • [10] HIGH-RESOLUTION FREQUENCY-WAVENUMBER SPECTRUM ANALYSIS
    CAPON, J
    [J]. PROCEEDINGS OF THE IEEE, 1969, 57 (08) : 1408 - &