Syngas production via microwave-assisted Dry Reforming of Methane over NiFe/MgAl2O4 alloy catalyst

被引:0
|
作者
Olowoyo, Joshua O. [1 ]
Sharifvaghefi, Seyyedmajid [1 ]
Zheng, Ying [1 ]
机构
[1] Western Univ, Dept Chem & Biochem Engn, Thompson Engn Bldg, London, ON N6A 5B9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Dry methane reforming; Microwave; Syngas; Alloy catalyst; Renewable energy; CO2; emissions; ALUMINA CATALYSTS; IRON-OXIDE; CARBON; CO2; NICKEL; NI; REDUCTION; TEMPERATURE; STABILITY; HYDROGEN;
D O I
10.1016/j.cep.2024.109899
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Dry reforming of methane (DRM) represents a promising avenue for generating syngas while simultaneously reducing CO2 2 emissions. However, its industrial application has been constrained by the necessity for elevated temperatures to prevent coke. Microwave (MW)-assisted DRM emerges as a compelling solution to facilitate high-temperature reactions, capitalizing on surplus renewable electrons to heat the catalyst bed swiftly and selectively, thereby circumventing the inefficient heating of the entire reactor. In this study, DRM is conducted under MW irradiation using NiFe/MgAl2O4 2 O 4 alloy catalysts. The impacts of MW power and catalysts' temperature- response behavior are investigated as well as the active components (Ni and Fe), and space velocity on the DRM reaction are explored. We determined the optimal quantities of Fe and Ni necessary to achieve the desired balance between MW heating and driving the DRM reaction. Under specific conditions-Ni content at 25 wt%, Fe content at 40 wt%, MW power of 286 W g- 1 , a temperature of 700 degrees C, flow rate of 450 mL min-- 1 and a space velocity of 12857 mL center dot g-1 center dot hr-- 1 center dot hr- 1 -conversion rates of 85% for CH4 4 and 62% for CO2 2 are achieved. NiFe/MgAl2O4 2 O 4 catalysts demonstrated high potential to be used in the MW-driven DRM as compared to conventional electric heating methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Enhanced activity and stability for combined steam and CO2 reforming of methane over NiLa/MgAl2O4 catalyst
    Li, Ze
    Leng, Jun
    Yan, Hao
    Zhang, Dongpei
    Ren, Delun
    Li, Feilong
    Liu, Yibin
    Chen, Xiaobo
    Yang, Chaohe
    APPLIED SURFACE SCIENCE, 2023, 638
  • [32] (Ni/MgAl2O4)@SiO2core-shell catalyst with high coke-resistance for the dry reforming of methane
    Wang, Yousen
    Fang, Qiong
    Shen, Weihua
    Zhu, Zhiqing
    Fang, Yunjin
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2018, 125 (01) : 127 - 139
  • [33] (Ni/MgAl2O4)@SiO2 core–shell catalyst with high coke-resistance for the dry reforming of methane
    Yousen Wang
    Qiong Fang
    Weihua Shen
    Zhiqing Zhu
    Yunjin Fang
    Reaction Kinetics, Mechanisms and Catalysis, 2018, 125 : 127 - 139
  • [34] Effect of Urea Excess on the Properties of the MgAl2O4 Obtained by Microwave-Assisted Combustion
    Carvalho, Luciene Santos
    de Melo e Melo, Vitor Rodrigo
    Sobrinho, Eledir Vitor
    Ruiz, Doris
    de Araujo Melo, Dulce Maria
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2018, 21 (01):
  • [35] Comparative study of conventional and microwave-assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst
    Fernandez, Y.
    Arenillas, A.
    Bermudez, J. M.
    Menendez, J. A.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2010, 88 (02) : 155 - 159
  • [36] Production of hydrogen by methane dry reforming over ruthenium-nickel based catalysts deposited on Al2O3, MgAl2O4, and YSZ
    Andraos, S.
    Abbas-Ghaleb, R.
    Chlala, D.
    Vita, A.
    Italiano, C.
    Lagana, M.
    Pino, L.
    Nakhl, M.
    Specchia, S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (47) : 25706 - 25716
  • [38] Mesoporous nanocrystalline MgAl2O4 spinel and its applications as support for Ni catalyst in dry reforming
    Alvar, E. Navaei
    Rezaei, M.
    SCRIPTA MATERIALIA, 2009, 61 (02) : 212 - 215
  • [39] Nickel catalyst supported on mesoporous MgAl2O4 nanopowders synthesized via a homogenous precipitation method for dry reforming reaction
    Fereshteh Meshkani
    Sayyede Fateme Golesorkh
    Mehran Rezaei
    Mahmood Andache
    Research on Chemical Intermediates, 2017, 43 : 545 - 559
  • [40] NaBH4-Assisted Synthesis of B-(Ni-Co)/MgAl2O4 Nanostructures for the Catalytic Dry Reforming of Methane
    Shakir, Md
    Prasad, Manohar
    Ray, Koustuv
    Sengupta, Siddhartha
    Sinhamahapatra, Apurba
    Liu, Shaomin
    Vuthaluru, Hari Babu
    ACS APPLIED NANO MATERIALS, 2022, 5 (08) : 10951 - 10961