Carbon Fiber-Reinforced PLA Composite for Fused Deposition Modeling 3D Printing

被引:4
|
作者
Wang, Andong [1 ]
Tang, Xinting [1 ]
Zeng, Yongxian [1 ]
Zou, Lei [1 ]
Bai, Fan [1 ]
Chen, Caifeng [1 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
基金
中国国家自然科学基金;
关键词
polylactic acid; enhanced modification; mechanical properties; thermal stability; process parameters; PROCESS PARAMETERS; PERFORMANCE;
D O I
10.3390/polym16152135
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polylactic acid (PLA) composite serve as widely used filaments in fused deposition modeling (FDM) 3D printing. This study investigates the enhancement of PLA composite's comprehensive mechanical properties and thermal stability through the incorporation of carbon fiber (CF). The influence of FDM process parameters on the mechanical properties of PLA composite is also analyzed. Results show that adding 5 wt.% CF significantly enhances the stiffness and comprehensive mechanical properties of PLA composite. The order of printing factors affecting the tensile strength of the PLA composite product is as follows: printing layer thickness, bottom plate temperature, printing speed, and nozzle temperature. Finally, optimal tensile strength is achieved under specific conditions: 0.1 mm layer thickness, 60 degrees C bottom plate temperature, 40 mm/s printing speed, and 215 degrees C nozzle temperature.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] 3D Printing of Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: A Status Review
    Pervaiz, Salman
    Qureshi, Taimur Ali
    Kashwani, Ghanim
    Kannan, Sathish
    MATERIALS, 2021, 14 (16)
  • [2] Reinforced Polymer Composite Filaments in Fused Deposition Modeling of 3D Printing Technology: A Review
    Joshua, R. Nekin
    Sakthivel, Aravind Raj
    ADVANCED ENGINEERING MATERIALS, 2025,
  • [3] 3D printing of a continuous fiber-reinforced composite based on a coaxial Kevlar/PLA filament
    Cersoli, Trenton
    Yelamanchi, Bharat
    MacDonald, Eric
    Carrillo, Jose Gonzalo
    Cortes, Pedro
    COMPOSITES AND ADVANCED MATERIALS, 2021, 30
  • [4] Surface Modification of 3D Printed PLA Objects by Fused Deposition Modeling: A Review
    Baran, Eda Hazal
    Erbil, H. Yildirim
    COLLOIDS AND INTERFACES, 2019, 3 (02):
  • [5] Effect of fiber content and plasticizer on mechanical and joint properties of carbon fiber powder reinforced PLA manufactured by 3D printing process
    Oz, Ozkan
    Ozturk, Fatih Huzeyfe
    Gulec, Can
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2023, 37 (15) : 2208 - 2231
  • [6] Research Status of and Prospects for 3D Printing for Continuous Fiber-Reinforced Thermoplastic Composites
    Yang, Yuan
    Yang, Bo
    Chang, Zhengping
    Duan, Jihao
    Chen, Weihua
    POLYMERS, 2023, 15 (17)
  • [7] Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing
    Bardot, Madison
    Schulz, Michael D.
    NANOMATERIALS, 2020, 10 (12) : 1 - 20
  • [8] An Investigation of Printing Parameters of Independent Extrusion Type 3D Print Continuous Carbon Fiber-Reinforced PLA
    Jia, Zhixin
    Wang, Qing
    Liu, Jiang
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [9] Properties investigation of 3D printed continuous pineapple leaf fiber-reinforced PLA composite
    Suteja, Jaya
    Firmanto, Hudiyo
    Soesanti, Arum
    Christian, Christian
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2022, 35 (11) : 2052 - 2061
  • [10] Characterization of carbon fiber reinforced PLA composites manufactured by fused deposition modeling
    Maqsood, Nabeel
    Rimasauskas, Marius
    COMPOSITES PART C: OPEN ACCESS, 2021, 4