Multimodal functional deep learning for multiomics data

被引:3
作者
Zhou, Yuan [1 ]
Geng, Pei [2 ]
Zhang, Shan [3 ]
Xiao, Feifei [1 ]
Cai, Guoshuai [4 ]
Chen, Li [1 ]
Lu, Qing [1 ]
机构
[1] Univ Florida, Dept Biostat, 2004 Mowry Rd, Gainesville, FL 32611 USA
[2] Univ New Hampshire, Dept Math & Stat, 33 Acad Way, Durham, NH 03824 USA
[3] Michigan State Univ, Dept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USA
[4] Univ Florida, Dept Surg, 1600 SW Archer Rd, Gainesville, FL 32611 USA
关键词
multiomics inputs; deep learning; functional data analysis; MODELS; SETS;
D O I
10.1093/bib/bbae448
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
With rapidly evolving high-throughput technologies and consistently decreasing costs, collecting multimodal omics data in large-scale studies has become feasible. Although studying multiomics provides a new comprehensive approach in understanding the complex biological mechanisms of human diseases, the high dimensionality of omics data and the complexity of the interactions among various omics levels in contributing to disease phenotypes present tremendous analytical challenges. There is a great need of novel analytical methods to address these challenges and to facilitate multiomics analyses. In this paper, we propose a multimodal functional deep learning (MFDL) method for the analysis of high-dimensional multiomics data. The MFDL method models the complex relationships between multiomics variants and disease phenotypes through the hierarchical structure of deep neural networks and handles high-dimensional omics data using the functional data analysis technique. Furthermore, MFDL leverages the structure of the multimodal model to capture interactions between different types of omics data. Through simulation studies and real-data applications, we demonstrate the advantages of MFDL in terms of prediction accuracy and its robustness to the high dimensionality and noise within the data.
引用
收藏
页数:10
相关论文
共 31 条
[1]   Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (06) :3351-3356
[2]   A map of human genome variation from population-scale sequencing [J].
Altshuler, David ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Collins, Francis S. ;
De la Vega, Francisco M. ;
Donnelly, Peter ;
Egholm, Michael ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Knoppers, Bartha M. ;
Lander, Eric S. ;
Lehrach, Hans ;
Mardis, Elaine R. ;
McVean, Gil A. ;
Nickerson, DebbieA. ;
Peltonen, Leena ;
Schafer, Alan J. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Deiros, David ;
Metzker, Mike ;
Muzny, Donna ;
Reid, Jeff ;
Wheeler, David ;
Wang, Jun ;
Li, Jingxiang ;
Jian, Min ;
Li, Guoqing ;
Li, Ruiqiang ;
Liang, Huiqing ;
Tian, Geng ;
Wang, Bo ;
Wang, Jian ;
Wang, Wei ;
Yang, Huanming ;
Zhang, Xiuqing ;
Zheng, Huisong ;
Lander, Eric S. ;
Altshuler, David L. ;
Ambrogio, Lauren ;
Bloom, Toby ;
Cibulskis, Kristian ;
Fennell, Tim J. ;
Gabriel, Stacey B. .
NATURE, 2010, 467 (7319) :1061-1073
[3]   Data quality control in genetic case-control association studies [J].
Anderson, Carl A. ;
Pettersson, Fredrik H. ;
Clarke, Geraldine M. ;
Cardon, Lon R. ;
Morris, Andrew P. ;
Zondervan, Krina T. .
NATURE PROTOCOLS, 2010, 5 (09) :1564-1573
[4]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[5]   Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems [J].
Cao, Kim-Anh Le ;
Boitard, Simon ;
Besse, Philippe .
BMC BIOINFORMATICS, 2011, 12
[6]   Transcriptomic and metabolomic data integration [J].
Cavill, Rachel ;
Jennen, Danyel ;
Kleinjans, Jos ;
Briede, Jacob Jan .
BRIEFINGS IN BIOINFORMATICS, 2016, 17 (05) :891-901
[7]   Unsupervised classification of multi-omics data during cardiac remodeling using deep learning [J].
Chung, Neo Christopher ;
Mirza, Bilal ;
Choi, Howard ;
Wang, Jie ;
Wang, Ding ;
Ping, Peipei ;
Wang, Wei .
METHODS, 2019, 166 :66-73
[8]   Cross-platform comparison and visualisation of gene expression data using co-inertia analysis -: art. no. 59 [J].
Culhane, AC ;
Perrière, G ;
Higgins, DG .
BMC BIOINFORMATICS, 2003, 4 (1)
[9]   Functional Linear Models for Association Analysis of Quantitative Traits [J].
Fan, Ruzong ;
Wang, Yifan ;
Mills, James L. ;
Wilson, Alexander F. ;
Bailey-Wilson, Joan E. ;
Xiong, Momiao .
GENETIC EPIDEMIOLOGY, 2013, 37 (07) :726-742
[10]   A Pilot Study of Gene/Gene and Gene/Environment Interactions in Alzheimer Disease [J].
Ghebranious, Nader ;
Mukesh, Bickol ;
Giampietro, Philip ;
Glurich, Ingrid ;
Mickel, Susan ;
Waring, Stephen ;
McCarty, Catherine .
CLINICAL MEDICINE & RESEARCH, 2011, 9 (01) :17-25