An investigation of stochastic trust-region based algorithms for finite-sum minimization

被引:0
|
作者
Bellavia, Stefania [1 ]
Morini, Benedetta [1 ]
Rebegoldi, Simone [2 ]
机构
[1] Univ Firenze, Dipartimento Ingn Ind, Florence, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, Via Giuseppe Campi 213-B, Modena, Italy
来源
OPTIMIZATION METHODS & SOFTWARE | 2024年 / 39卷 / 05期
关键词
Finite-sum minimization; stochastic gradient algorithms; trust-region; adaptive sampling strategies; OPTIMIZATION METHODS;
D O I
10.1080/10556788.2024.2346834
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This work elaborates on the TRust-region-ish (TRish) algorithm, a stochastic optimization method for finite-sum minimization problems proposed by Curtis et al. in [F.E. Curtis, K. Scheinberg, and R. Shi, A stochastic trust region algorithm based on careful step normalization, INFORMS. J. Optim. 1(3) (2019), pp. 200-220; F.E. Curtis and R. Shi, A fully stochastic second-order trust region method, Optim. Methods Softw. 37(3) (2022), pp. 844-877]. A theoretical analysis that complements the results in the literature is presented, and the issue of tuning the involved hyper-parameters is investigated. Our study also focuses on a practical version of the method, which computes the stochastic gradient by means of the inner product test and the orthogonality test proposed by Bollapragada et al. in [R. Bollapragada, R. Byrd, and J. Nocedal, Adaptive sampling strategies for stochastic optimization, SIAM. J. Optim. 28(4) (2018), pp. 3312-3343]. It is shown experimentally that this implementation improves the performance of TRish and reduces its sensitivity to the choice of the hyper-parameters.
引用
收藏
页码:937 / 966
页数:30
相关论文
共 50 条
  • [1] A stochastic first-order trust-region method with inexact restoration for finite-sum minimization
    Stefania Bellavia
    Nataša Krejić
    Benedetta Morini
    Simone Rebegoldi
    Computational Optimization and Applications, 2023, 84 : 53 - 84
  • [2] Inexact restoration with subsampled trust-region methods for finite-sum minimization
    Bellavia, Stefania
    Krejic, Natasa
    Morini, Benedetta
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 76 (03) : 701 - 736
  • [3] Inexact restoration with subsampled trust-region methods for finite-sum minimization
    Stefania Bellavia
    Nataša Krejić
    Benedetta Morini
    Computational Optimization and Applications, 2020, 76 : 701 - 736
  • [4] A stochastic first-order trust-region method with inexact restoration for finite-sum minimization
    Bellavia, Stefania
    Krejic, Natasa
    Morini, Benedetta
    Rebegoldi, Simone
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 84 (01) : 53 - 84
  • [5] ACCELERATED STOCHASTIC ALGORITHMS FOR NONCONVEX FINITE-SUM AND MULTIBLOCK OPTIMIZATION
    Lan, Guanghui
    Yang, Yu
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2753 - 2784
  • [6] Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization
    Kavis, Ali
    Skoulakis, Stratis
    Antonakopoulos, Kimon
    Dadi, Leello Tadesse
    Cevher, Volkan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [7] Subsampled cubic regularization method for finite-sum minimization
    Goncalves, Max L. N.
    OPTIMIZATION, 2024,
  • [8] STOCHASTIC TRUST-REGION METHODS WITH TRUST-REGION RADIUS DEPENDING ON PROBABILISTIC MODELS
    Wang, Xiaoyu
    Yuan, Ya-xiang
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (02): : 295 - 336
  • [9] Global convergence of trust-region algorithms for convex constrained minimization without derivatives
    Conejo, P. D.
    Karas, E. W.
    Pedroso, L. G.
    Ribeiro, A. A.
    Sachine, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 324 - 330
  • [10] A SUBSPACE MINIMIZATION METHOD FOR THE TRUST-REGION STEP
    Erway, Jennifer B.
    Gill, Philip E.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1439 - 1461