Gradient scaffolds for osteochondral tissue engineering and regeneration

被引:6
作者
Xiong, Ziqi [1 ,2 ,3 ]
Hong, Fangyuan [1 ,2 ,3 ]
Wu, Zhonglin [1 ,2 ,3 ,4 ]
Ren, Yijia [1 ,2 ,3 ]
Sun, Nuola [1 ,2 ,3 ]
Heng, Boon Chin [5 ]
Zhou, Jing [1 ,2 ,3 ,6 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Dept Sports Med, Hangzhou, Peoples R China
[2] Zhejiang Univ, Liangzhu Lab, Sch Med, Hangzhou, Peoples R China
[3] Zhejiang Univ, Sch Med, Dr Li Dak Sum & Yip Yio Chin Ctr Stem Cells & Rege, Hangzhou, Peoples R China
[4] Zhejiang Univ, Affiliated First Hangzhou Peoples Hosp, Dept Hepatobiliary & Pancreat Surg, Key Lab Integrated Oncol & Intelligent Med Zhejian, Hangzhou 310006, Peoples R China
[5] Peking Univ, Sch Stomatol, Beijing, Peoples R China
[6] China Orthoped Regenerat Med Grp CORMed, Hangzhou, Peoples R China
关键词
Osteochondral defect; Integration; Gradient scaffolds; Tissue engineering; MESENCHYMAL STEM-CELLS; ARTICULAR-CARTILAGE; MECHANICAL-PROPERTIES; TOP-STEREOLITHOGRAPHY; ZONAL ORGANIZATION; SOLUTE TRANSPORT; SUBCHONDRAL BONE; DEFECT REPAIR; SILK FIBROIN; DIFFERENTIATION;
D O I
10.1016/j.cej.2024.154797
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, the incidence of osteoarthritis (OA) has been increasing worldwide. This disease not only affects the articular cartilage but also impairs the subchondral bone and surrounding tissues. Therefore, there has been much research dedicated to osteochondral defect repair. In tissue engineering, integrated gradient tissueengineered osteochondral scaffold has been proposed as a promising treatment, that can simultaneously repair articular cartilage, osteochondral interface, and subchondral bone. It is possible to identify a variety of physiological gradients between the surface of the articular cartilage and the subchondral bone. Simulating these gradients in scaffold design is an effective way to regenerate osteochondral tissue. Starting from various physiological gradients, this review provides an overview of current research on gradient scaffolds for the repair of osteochondral tissue.
引用
收藏
页数:16
相关论文
共 167 条
[1]   A Graded, Porous Composite of Natural Biopolymers and Octacalcium Phosphate Guides Osteochondral Differentiation of Stem Cells [J].
Amann, Elisabeth ;
Amirall, Amisel ;
Franco, Albina R. ;
Poh, Patrina S. P. ;
Sola Duenas, Francisco J. ;
Fuentes Estevez, Gaston ;
Leonor, Isabel B. ;
Reis, Rui L. ;
van Griensven, Martijn ;
Balmayor, Elizabeth R. .
ADVANCED HEALTHCARE MATERIALS, 2021, 10 (06)
[2]  
Ansari N, 2020, HANDB EXP PHARMACOL, V262, P1, DOI 10.1007/164_2019_343
[3]   Engineering of gradient osteochondral tissue: From nature to lab [J].
Ansari, Sana ;
Khorshidi, Sajedeh ;
Karkhaneh, Akbar .
ACTA BIOMATERIALIA, 2019, 87 :41-54
[4]   Solute transport in the deep and calcified zones of articular cartilage [J].
Arkill, K. P. ;
Winlove, C. P. .
OSTEOARTHRITIS AND CARTILAGE, 2008, 16 (06) :708-714
[5]   Biomimetic Gradient Scaffolds Containing Hyaluronic Acid and Sr/Zn Folates for Osteochondral Tissue Engineering [J].
Asensio, Gerardo ;
Benito-Garzon, Lorena ;
Ramirez-Jimenez, Rosa Ana ;
Guadilla, Yasmina ;
Gonzalez-Rubio, Julian ;
Abradelo, Cristina ;
Parra, Juan ;
Martin-Lopez, Maria Rocio ;
Aguilar, Maria Rosa ;
Vazquez-Lasa, Blanca ;
Rojo, Luis .
POLYMERS, 2022, 14 (01)
[6]   Bioactive Inks Development for Osteochondral Tissue Engineering: A Mini-Review [J].
Bakhtiary, Negar ;
Liu, Chaozong ;
Ghorbani, Farnaz .
GELS, 2021, 7 (04)
[7]   Free or fixed state of nHAP differentially regulates hBMSC morphology and osteogenesis through the valve role of ITGA7 [J].
Bao, Fangyuan ;
Yi, Junzhi ;
Liu, Yixiao ;
Zhong, Yuliang ;
Zhang, Hui ;
Wu, Zhonglin ;
Heng, Boon Chin ;
Wang, Ying ;
Wang, Ziyang ;
Xiao, Lizi ;
Liu, Hua ;
Ouyang, Hongwei ;
Zhou, Jing .
BIOACTIVE MATERIALS, 2022, 18 :539-551
[8]   Biomimetic Scaffolds Modulate the Posttraumatic Inflammatory Response in Articular Cartilage Contributing to Enhanced Neoformation of Cartilaginous Tissue In Vivo [J].
Bauza-Mayol, Guillermo ;
Quintela, Marcos ;
Brozovich, Ava ;
Hopson, Michael ;
Shaikh, Shazad ;
Cabrera, Fernando ;
Shi, Aaron ;
Niclot, Federica Banche ;
Paradiso, Francesca ;
Combellak, Emma ;
Jovic, Tom ;
Rees, Paul ;
Tasciotti, Ennio ;
Francis, Lewis W. ;
Mcculloch, Patrick ;
Taraballi, Francesca .
ADVANCED HEALTHCARE MATERIALS, 2022, 11 (01)
[9]   The effect of multi-material architecture on the ex vivo osteochondral integration of bioprinted constructs [J].
Bedell, Matthew L. ;
Wang, Ziwen ;
Hogan, Katie J. ;
Torres, Angelica L. ;
Pearce, Hannah A. ;
Chim, Letitia K. ;
Grande-Allen, K. Jane ;
Mikos, Antonios G. .
ACTA BIOMATERIALIA, 2023, 155 :99-112
[10]   Installation of click-type functional groups enable the creation of an additive manufactured construct for the osteochondral interface [J].
Beeren, Ivo A. O. ;
Dijkstra, Pieter J. ;
Lourenco, Ana Filipa H. ;
Sinha, Ravi ;
Gomes, David B. ;
Liu, Hong ;
Bouvy, Nicole ;
Baker, Matthew B. ;
Camarero-Espinosa, Sandra ;
Moroni, Lorenzo .
BIOFABRICATION, 2023, 15 (01)