Research Workflows - Towards reproducible science via detailed provenance tracking in Open Science Chain

被引:2
|
作者
Nandigam, Viswanath [1 ]
Lin, Kai [1 ]
Shantharam, Manu [1 ]
Sakai, Scott [1 ]
Sivagnanam, Subhashini [1 ]
机构
[1] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA
来源
PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING 2020, PEARC 2020 | 2020年
基金
美国国家科学基金会;
关键词
Data Reproducibility; Data Provenance; Data Integrity; Blockchain;
D O I
10.1145/3311790.3399619
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Scientific research has always struggled with problems related to reproducibility caused in part by low data sharing rates and lack of provenance. Credibility of the research hypothesis comes into question when results cannot be replicated. While the growing amount of data and widespread use of computational code in research has been pushing scientific breakthroughs, their references in scientific publications is insufficient from a reproducibility perspective. The NSF funded Open Science Chain (OSC) is a cyberinfrastructure platform built using blockchain technologies that enables researchers to efficiently validate the authenticity of published data, track their provenance and view lineage. It does this by leveraging blockchain technology to securely store metadata and verification information about research data and track changes to that data in an auditable manner. In this poster we introduce the concept of "research workflows", a tool that allows researchers to create a detailed workflow of their scientific experiment, linking specific data and computational code used in their published results in order to enable independent verification of the analysis. OSC research workflows will allow for detailed provenance tracking both within the OSC platform as well as external repositories like Github, thereby enabling transparency and fostering trust in the scientific process.
引用
收藏
页码:484 / 486
页数:3
相关论文
共 50 条
  • [1] On Reproducible AI: Towards Reproducible Research, Open Science, and Digital Scholarship in AI Publications
    Gundersen, Odd Erik
    Gil, Yolanda
    Aha, David W.
    AI MAGAZINE, 2018, 39 (03) : 56 - 68
  • [2] Introducing the Open Science Chain - Protecting Integrity and Provenance of Research Data
    Sivagnanam, Subhashini
    Nandigam, Viswanath
    Lin, Kai
    PEARC '19: PROCEEDINGS OF THE PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING ON RISE OF THE MACHINES (LEARNING), 2019,
  • [3] ITK: enabling reproducible research and open science
    McCormick, Matthew
    Liu, Xiaoxiao
    Jomier, Julien
    Marion, Charles
    Ibanez, Luis
    FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [4] Interactive Provenance Summaries for Reproducible Science
    Li, Xiang
    Xu, Xiaoyang
    Malik, Tanu
    PROCEEDINGS OF THE 2016 IEEE 12TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE), 2016, : 355 - 360
  • [5] Reproducible Research in Computational Science
    Peng, Roger D.
    SCIENCE, 2011, 334 (6060) : 1226 - 1227
  • [6] Tracking provenance of earth science data
    Tilmes, Curt
    Yesha, Yelena
    Halem, Milton
    EARTH SCIENCE INFORMATICS, 2010, 3 (1-2) : 59 - 65
  • [7] Tracking provenance of earth science data
    Curt Tilmes
    Yelena Yesha
    Milton Halem
    Earth Science Informatics, 2010, 3 : 59 - 65
  • [8] OPEN AND REPRODUCIBLE SCIENCE IN PSYCHOPHYSIOLOGICAL RESEARCH-CHALLENGES AND EMERGING SOLUTIONS
    Lonsdorf, Tina
    PSYCHOPHYSIOLOGY, 2021, 58 : S23 - S23
  • [9] Workflows and Provenance: Toward Information Science Solutions for the Natural Sciences
    Gryk, Michael R.
    Ludascher, Bertram
    LIBRARY TRENDS, 2017, 65 (04) : 555 - 562
  • [10] Eleven strategies for making reproducible research and open science training the norm at research institutions
    Kohrs, Friederike E.
    Auer, Susann
    Bannach-Brown, Alexandra
    Fiedler, Susann
    Haven, Tamarinde Laura
    Heise, Verena
    Holman, Constance
    Azevedo, Flavio
    Bernard, Rene
    Bleier, Armin
    Boessel, Nicole
    Cahill, Brian Patrick
    Castro, Leyla Jael
    Ehrenhofer, Adrian
    Eichel, Kristina
    Frank, Maximillian
    Frick, Claudia
    Friese, Malte
    Gaertner, Anne
    Gierend, Kerstin
    Gruening, David Joachim
    Hahn, Lena
    Huelsemann, Maren
    Ihle, Malika
    Illius, Sabrina
    Koenig, Laura
    Koenig, Matthias
    Kulke, Louisa
    Kutlin, Anton
    Lammers, Fritjof
    Mehler, David M. A.
    Miehl, Christoph
    Mueller-Alcazar, Anett
    Neuendorf, Claudia
    Niemeyer, Helen
    Pargent, Florian
    Peikert, Aaron
    Pfeuffer, Christina U.
    Reinecke, Robert
    Roeer, Jan Philipp
    Rohmann, Jessica L.
    Sanchez-Tojar, Alfredo
    Scherbaum, Stefan
    Sixtus, Elena
    Spitzer, Lisa
    Strassburger, Vera Maren
    Weber, Marcel
    Whitmire, Clarissa J.
    Zerna, Josephine
    Zorbek, Dilara
    ELIFE, 2023, 12