A Multi-Objective Optimization Method for Shelter Site Selection Based on Deep Reinforcement Learning

被引:0
|
作者
Zhang, Di [1 ,2 ]
Meng, Huan [1 ,2 ]
Wang, Moyang [1 ,2 ]
Xu, Xianrui [3 ]
Yan, Jianhai [4 ]
Li, Xiang [1 ,2 ,5 ,6 ,7 ]
机构
[1] East China Normal Univ, Key Lab Geog Informat Sci, Minist Educ, Shanghai, Peoples R China
[2] East China Normal Univ, Sch Geog Sci, Shanghai, Peoples R China
[3] Shanghai Univ Sport, Sch Econ & Management, Shanghai, Peoples R China
[4] Univ Shanghai Sci & Technol, Business Sch, Shanghai, Peoples R China
[5] East China Normal Univ, Low Altitude Econ Spatial Intelligence Technol Res, Shanghai, Peoples R China
[6] East China Normal Univ, Inst Cartog, Shanghai, Peoples R China
[7] East China Normal Univ, Chongqing Key Lab Precis Opt, Chongqing Inst, Chongqing, Peoples R China
关键词
deep reinforcement learning; emergency shelter; multi-objective optimization; site selection; FACILITY LOCATION; SPATIAL-ANALYSIS; MODEL; EARTHQUAKE; ALGORITHM; GIS; FRAMEWORK;
D O I
10.1111/tgis.13252
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Urban emergency shelters are a special type of public service facility, and their planning and construction are directly related to the safety of urban residents' lives and property, as well as to the sustainable development of the city. Existing research on the site selection of shelters is not ideal when dealing with large-scale scenarios and fails to accurately reflect the actual situation. To address this issue, this study proposes an emergency shelter site selection model based on deep reinforcement learning, IAM-PPO. This model constructs the site selection problem as a Markov Decision Process and uses deep learning to extract information from the site selection scenario. It finds the final solution for shelter locations through continuous exploration and learning. To improve the training efficiency of the model, the action masking process is innovatively applied to the model. The research results and ablation experiments using Shanghai as a case study prove that, owing to the diversity of shelter service ranges and action masking mechanism, the model proposed in this study can provide efficient and accurate shelter location services. Moreover, the customizability of this model provides meaningful reference value for other public facility location problems.
引用
收藏
页码:2722 / 2741
页数:20
相关论文
共 50 条
  • [41] An Improved Multi-Objective Deep Reinforcement Learning Algorithm Based on Envelope Update
    Hu, Can
    Zhu, Zhengwei
    Wang, Lijia
    Zhu, Chenyang
    Yang, Yanfei
    ELECTRONICS, 2022, 11 (16)
  • [42] Model selection of extreme learning machine based on multi-objective optimization
    Wentao Mao
    Mei Tian
    Xizheng Cao
    Jiucheng Xu
    Neural Computing and Applications, 2013, 22 : 521 - 529
  • [43] Scheduling of Continuous Annealing With a Multi-Objective Differential Evolution Algorithm Based on Deep Reinforcement Learning
    Li, Tianyang
    Meng, Ying
    Tang, Lixin
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (02) : 1767 - 1780
  • [44] Model selection of extreme learning machine based on multi-objective optimization
    Mao, Wentao
    Tian, Mei
    Cao, Xizheng
    Xu, Jiucheng
    NEURAL COMPUTING & APPLICATIONS, 2013, 22 (3-4) : 521 - 529
  • [45] A temporal difference method for multi-objective reinforcement learning
    Ruiz-Montiel, Manuela
    Mandow, Lawrence
    Perez-de-la-Cruz, Jose-Luis
    NEUROCOMPUTING, 2017, 263 : 15 - 25
  • [46] Reinforcement Learning-Based Hybrid Multi-Objective Optimization Algorithm Design
    Palm, Herbert
    Arndt, Lorin
    INFORMATION, 2023, 14 (05)
  • [47] A reinforcement learning-based multi-objective optimization in an interval and dynamic environment
    Xu, Yue
    Song, Yuxuan
    Pi, Dechang
    Chen, Yang
    Qin, Shuo
    Zhang, Xiaoge
    Yang, Shengxiang
    KNOWLEDGE-BASED SYSTEMS, 2023, 280
  • [48] An adaptive multi-objective multi-task scheduling method by hierarchical deep reinforcement learning
    Zhang, Jianxiong
    Guo, Bing
    Ding, Xuefeng
    Hu, Dasha
    Tang, Jun
    Du, Ke
    Tang, Chao
    Jiang, Yuming
    APPLIED SOFT COMPUTING, 2024, 154
  • [49] A multi-objective feature selection method based on bacterial foraging optimization
    Ben Niu
    Wenjie Yi
    Lijing Tan
    Shuang Geng
    Hong Wang
    Natural Computing, 2021, 20 : 63 - 76
  • [50] Multi-objective optimization approach for permanent magnet machine viaimproved soft actor-critic based on deep reinforcement learning
    Wang, Chen
    Dong, Tianyu
    Chen, Lei
    Zhu, Guixiang
    Chen, Yihan
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264