STRONG CONVERGENCE OF THE ALTERNATING RESOLVENT ALGORITHM IN HILBERT SPACES

被引:0
作者
Yao, Bingchen [1 ]
Wang, Yamin [1 ,2 ]
机构
[1] Shaoxing Univ, Dept Math, Shaoxing 312000, Peoples R China
[2] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
来源
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS | 2024年 / 2024卷
基金
中国国家自然科学基金;
关键词
Alternating resolvent algorithm; Error criterion; Viscosity; Zero point; PROXIMAL POINT ALGORITHM;
D O I
10.23952/jnfa.2024.15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a viscosity alternating resolvent algorithm with over-relaxed parameters for finding a common zero point of two maximal monotone operators A and B . We give the strong convergence of the algorithm under a new error criterion and some mild conditions in Hilbert spaces.
引用
收藏
页数:11
相关论文
共 21 条
  • [1] Inexact Halpern-type proximal point algorithm
    Boikanyo, O. A.
    Morosanu, G.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2011, 51 (01) : 11 - 26
  • [2] A proximal point algorithm converging strongly for general errors
    Boikanyo, O. A.
    Morosanu, G.
    [J]. OPTIMIZATION LETTERS, 2010, 4 (04) : 635 - 641
  • [3] A generalized contraction proximal point algorithm with two monotone operators
    Boikanyo, Oganeditse A.
    Makgoeng, Spencer
    [J]. QUAESTIONES MATHEMATICAE, 2019, 42 (08) : 1065 - 1078
  • [4] Boikanyo OA, 2013, J NONLINEAR CONVEX A, V14, P221
  • [5] THE METHOD OF ALTERNATING RESOLVENTS REVISITED
    Boikanyo, Oganeditse A.
    Morosanu, Gheorghe
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (11) : 1280 - 1287
  • [6] A contraction proximal point algorithm with two monotone operators
    Boikanyo, Oganeditse A.
    Morosanu, Gheorghe
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (14) : 5686 - 5692
  • [7] STRONG CONVERGENCE ANALYSIS OF A HYBRID ALGORITHM FOR NONLINEAR OPERATORS IN A BANACH SPACE
    Cho, Sun Young
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (01): : 19 - 31
  • [8] WEAK CONVERGENCE OF A SPLITTING ALGORITHM IN HILBERT SPACES
    Cho, Sun Young
    Bin Dehaish, B. A.
    Qin, Xiaolong
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02): : 427 - 438
  • [9] Strong convergence of a splitting algorithm for treating monotone operators
    Cho, Sun Young
    Qin, Xiaolong
    Wang, Lin
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2014,
  • [10] Convergence of over-relaxed contraction-proximal point algorithm in Hilbert spaces
    Cui, Huanhuan
    Ceng, Luchuan
    [J]. OPTIMIZATION, 2017, 66 (05) : 793 - 809