Vortex Domain Wall Thermal Pinning and Depinning in a Constricted Magnetic Nanowire for Storage Memory Nanodevices

被引:2
作者
Al Bahri, Mohammed [1 ]
Al-Kamiyani, Salim [1 ]
Al Habsi, Al Maha [1 ]
机构
[1] ASharqiyah Univ, Dept Basic & Appl Sci, POB 42, Ibra 400, Oman
关键词
micromagnetic simulation; vortex domain wall; stepped magnetic nanowire; spin transfer torque; VDW thermal stability; DRIVEN; MOTION; PROPAGATION; FIELD;
D O I
10.3390/nano14181518
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we investigate the thermal pinning and depinning behaviors of vortex domain walls (VDWs) in constricted magnetic nanowires, with a focus on potential applications in storage memory nanodevices. Using micromagnetic simulations and spin transfer torque, we examine the impacts of device temperature on VDW transformation into a transverse domain wall (TDW), mobility, and thermal strength pinning at the constricted area. We explore how thermal fluctuations influence the stability and mobility of domain walls within stepped nanowires. The thermal structural stability of VDWs and their pinning were investigated considering the effects of the stepped area depth (d) and its length (lambda). Our findings indicate that the thermal stability of VDWs in magnetic stepped nanowires increases with decreasing the depth of the stepped area (d) and increasing nanowire thickness (th). For th >= 50 nm, the stability is maintained at temperatures >= 1200 K. In the stepped area, VDW thermal pinning strength increases with increasing d and decreasing lambda. For values of d >= 100 nm, VDWs depin from the stepped area at temperatures >= 1000 K. Our results reveal that thermal effects significantly influence the pinning strength at constricted sites, impacting the overall performance and reliability of magnetic memory devices. These insights are crucial for optimizing the design and functionality of next-generation nanodevices. The stepped design offers numerous advantages, including simple fabrication using a single electron beam lithography exposure step on the resist. Additionally, adjusting lambda and d allows for precise control over the pinning strength by modifying the dimensions of the stepped areas.
引用
收藏
页数:14
相关论文
共 49 条
[1]   Current-induced domain wall motion in permalloy nanowires with a rectangular cross-section [J].
Ai, J. H. ;
Miao, B. F. ;
Sun, L. ;
You, B. ;
Hu, An ;
Ding, H. F. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (09)
[2]   Controlling domain wall thermal stability switching in magnetic nanowires for storage memory nanodevices [J].
Al Bahri, M. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 543
[3]   Geometrical Confinement of Vortex Domain Wall in Constricted Magnetic Nanowire With In-Plane Magnetic Anisotropy [J].
Al Bahri, M. .
IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (04)
[4]   Vortex domain wall dynamics in stepped magnetic nanowire with in-plane magnetic anisotropy [J].
Al Bahri, M. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 515
[5]   Staggered Magnetic Nanowire Devices for Effective Domain-Wall Pinning in Racetrack Memory [J].
Al Bahri, M. ;
Borie, B. ;
Jin, T. L. ;
Sbiaa, R. ;
Klaui, M. ;
Piramanayagam, S. N. .
PHYSICAL REVIEW APPLIED, 2019, 11 (02)
[6]   Thermal Effects on Domain Wall Stability at Magnetic Stepped Nanowire for Nanodevices Storage [J].
Al Bahri, Mohammed ;
Al-Kamiyani, Salim .
NANOMATERIALS, 2024, 14 (14)
[7]   Vortex Domain Wall Thermal Stability in Magnetic Nanodevices with In-Plane Magnetic Anisotropy [J].
Al Bahri, Mohammed ;
Al Harthy, Thuraya .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2023, 220 (02)
[8]   Chiral Dependence of Vortex Domain Wall Structure in a Stepped Magnetic Nanowire [J].
Al Bahri, Mohammed .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2022, 219 (02)
[9]   Magnetic domain-wall logic [J].
Allwood, DA ;
Xiong, G ;
Faulkner, CC ;
Atkinson, D ;
Petit, D ;
Cowburn, RP .
SCIENCE, 2005, 309 (5741) :1688-1692
[10]   Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires [J].
Beach, GSD ;
Nistor, C ;
Knutson, C ;
Tsoi, M ;
Erskine, JL .
NATURE MATERIALS, 2005, 4 (10) :741-744